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Dynamic Dependability Level Switching

Strategies by Utilizing Threat Predictions

Lim Sung-Hwa1)*

Abstract A System can be more Dependable from some types of Threats if the Dependability

Level Against the Threat on the System is Increased. However, The Dependability-performance

Tradeoff should be Considered because the Increased Dependability may Degrade the Performance of

the System. Therefore, it is Efficient to Temporally Increase the Dependability Level to High only when

an Threat is Predicted on the System in a Short time while Maintaining the Level in Low or mid

in Normal Situations. In this Paper, we Present a Threat Prevention Strategy for a Networked Node

by Dynamically Changing the Dependability Level According to the Threat Situation on its

Logically/physically Neighboring Nodes. As case Studies, we Employ our Strategy to an Internet Server

Against TCP SYN Flood Attacks and to a Checkpoint and Rollback System Against Transient Faults.

Our Performance Analysis Shows that our Strategy can Effectively Relieve the Damage of the Failure

without Serious Performance Degradation.
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1. Introduction

In current Internet environments, a lot of

computing nodes (i.e., clients or servers) are

logically or physically clustered. Moreover, in

future Internet environments such as NDN

(Named Data Networking) [1], every node may

have the both roles of the consumer (i.e.,

client) and the provider (i.e., server).

Therefore, threats such as diffusing faults or

malicious attacks on a computing node may

also be threats to its physically/logically

neighboring nodes [2-3, 14-15]. Reasons of

failures are complex and impacts of those tend

to be catastrophic. Not only hardware design
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faults and system-specific weaknesses but also

defections on system software or application

software may cause augmented chain reactions

of common faults on neighboring computing

nodes.

Failures on the neighboring nodes can be

suppressed by predicting and preventing the

same fault when it has occurred on a node.

Therefore, we can make a node more

dependable from a threat if we increase the

dependability level on the node against the

threat. However, the increased dependability

level brings about somewhat performance

degradation. Therefore, it will be efficient to

maintain the dependability level in low or mid,

and temporally increase it to high in advance

only when a threat is predicted in the near

future. Then, the challenge is how to predict

the threat on the node. We can expect that a

threat may occur on a node with a high

probability in a short time when one of its
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physical or logical neighbor nodes is being

failed by the threat. Indeed, if we detect a

threat occurring on one of neighbors of the

node, we can predict that the same threat will

occur on the node with a high probability. At

that time, the node, which detects that its

neighbor have been failed, can relieve the

damage of the failure by temporally increasing

their dependability level against the threat.

In this paper, we present a failure

prevention policy switching its dependability

level dynamically by predicting the threat

situation on its neighboring nodes. Moreover,

as case studies, we apply our policy to a

server system against the TCP SYN flood

attack, which is one of the most common

DDoS (Distributed Denial of Service) attacks

[4] as a security issue, and a checkpoint and

rollback system against transient faults as a

fault-tolerance issue. Performance analysis

shows that our strategy can effectively

mitigate the damage of the threats without

serious performance.

2. Dependent Fault modeling

Physically or logically related computing

nodes may some dependency of common

faults. One of our previous works presented

the dependent fault modeling [5]. Let  be

denoted as one of the faults that can incur a

failure on node  , and  as the failure region

which is a set of all faults incurring failures

on node  as shown in Equation (1).

 ⊃ … (1)

If two neighboring nodes (i.e., node 1 and

node 2) may have common fault elements (i.e.

). When a fault element, which has

propagating characteristic, in  is occurred in

node 1, then the fault may be occurred in

node 2 with great chance. Fig. 1 shows failure

regions of node 1 and node 2, and the

common failure region. Let us denote  and

 as failure rates on node 1 and node 2,

respectively. We set the occurrence rate of

common faults (i.e., elements in ) as  .

Then we can express the failure rate of node

1 and node 2 by considering common faults as

shown in Equation (2), where   is node  ’s

common fault ratio between two nodes.

     (2)

Fig. 1 Failure region model [4]

3. Dynamic Dependability Level Switching

Policy

The main idea is to protect physically or

logically neighboring nodes against a threat

when one or more nodes are detected to being

failed by the threat. The method to detect

threat situations of other nodes can be

performed in various ways, and is quite

dependent on their implementation methods.

For example, every node may scan the others’

states periodically in an attempt to detect a

threat situation and determine the types of the

threat. On the other way, every node may

broadcast an alert signal to its neighboring

nodes when it is being failed.
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Step 1. Scan state of current node to see whether it 
has any threat
Step 2. Check alert messages sent from neighbour 
nodes which are to be compromised by propagational 
threat
Step 3. If any propagational threat is inspected in 
Step2

Step 3-1. send an alert message to all neighbor 
nodes about the propagational threat

Step 3-2. Increase the fault-tolerance/security level 
on the node according to the cause of attack

Step 3-3. After a while, if the threats are dismissed 
then restore the fault-tolerance /security level 
on the node to normal

Step 4. Return to Step 1 and repeat

Fig. 2 Dynamic Dependability Level Switching

Policy

When a node has detected a threat on one

of its neighboring nodes, the node temporarily

increases its dependability level against the

attack by employing proper fault-tolerance or

security techniques. The temporarily increased

dependability level should be returned to the

normal level when the threat is dismissed or a

predefined time has passed, because

maintaining these levels highly may be the

burden to the system. Fig. 2 presents the

dynamic security level changing policy, which

is partly inspired from the fault-prevention

policy, which was previous works of our

research group [5-6].

4. Case Study of Security : TCP SYN

Attacks2)

In this section, we present an attack prevention

algorithm for a server node by changing its

security level dynamically according to the

2) A preliminary version of this section is presented in ICITCS 2014 [13]

#define ATTACK_CLEAN 0x0000
#define ATTACK _PROP 0x1000  // Threat is propagational
#define ATTACK _INNER 0x0010 // on the current system

Threat_Alert_N_Avoid( ) { 
while (true) { 

nState=Scan_Current_Status( ); /* Scan state of current 
node to see whether it 
has any attack*/ 

nState|=Scan_Alert_Msg( ); /* Check alert messages sent 
from neighbour nodes which 
are to be compromised by 
propagational attacks*/ 

if ((nState & ATTACK _PROP) && (Lsystem==NORMAL)) {
if (nState & ATTACK _INNER) 

Send_AlertMessage(nState); /* send an alert 
message to all neighbor 
nodes about the 
propagational threat */ 

Increase_Level(); /* Increase the security level on the 
node according to the cause of 
attack */

Lsystem = HIGH;
}
if ((nState == ATTACK _CLEAN) && (Lsystem==HIGH)){

Restore_Level(); /* Restore the security level on the 
node to normal */

Lsystem = NORMAL;
}

} 
/***********  Parameter Descriptions     **************/
nState : the flag  whether this node can continue its 

operation (Default is ATTACK_CLEAN) 
Lsystem :  the flag value whether fault tolerance/system 

security level of current system is HIGH or NORMAL. 
Default is NORMAL                                
        

Fig. 3 Dynamic Security Level Switching

Algorithm

attack situation on its neighboring nodes as

shown in Fig. 3. Moreover, as a case study,

we apply our strategy to a server system

against the TCP SYN flood attack, which is

one of the most common DDoS attacks [4, 16].

Fig. 4 illustrates an example simple scenario

when we apply the algorithm shown in Fig 3.
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The three server nodes are guarded by a

firewall equipped on the gateway. One of the

nodes is being compromise by an attack, and

then the node disseminates an alert message

enclosing the information about the attack to

its neighbors. On receiving the message, the

neighboring nodes prepare the attack by

switching their security level to the attack

higher. After the attack situation is terminated,

their security level is returned to the normal

level.

Fig. 4 Example scenario

As a case study, the algorithm shown in

Fig. 3 is applied to a specific case, in which

we are trying to prevent TCP SYN attacks on

a system. TCP SYN Flooding attack, which is

one of DDoS attacks, exploits the standard

TCP three-way handshaking by sending great

number of connection requests with spoofed

source addresses to the victim system [4, 7].

This kind of attack results in the victim

system refusing other normal incoming

connections when the backlog queue which is

buffering incoming connection is overloaded.

The damage of TCP SYN attack can be

relieved by shortening timeout length, by

reducing retransmissions, or by increasing the

backlog queue size of the victim machine.

However, there are tradeoffs in these treatments

to relieve the TCP SYN attack. Shortening

timeout length or reducing retransmission number

may increase dropping rate of normal incoming

connections. Increasing backlog queue size may

postpone the time the victim system being

fully compromised but may consume more

system resource. Therefore, it would be highly

effective to adjust theses parameters dynamically

considering TCP SYN attack situation.

Our suggestion to cope with the TCP SYN

flooding attack is as follows. If a nodes is

compromised by the TCP SYN flooding

through the Internet, its neighboring nodes in

the same system may also be attacked in a

short time. When a node is compromised by

the TCP SYN flooding, it detects the fact that

a SYN flooding is being occurred and

broadcasts warning message for the TCP SYN

flooding to its neighboring nodes in the same

system. Basically, we can detect TCP SYN

flooding in a node by checking the number of

current half-opened TCP connection. Even

though, there are many enhanced ways

presented to detect TCP SYN attacks [4, 8],

finding out the effective detection scheme is

out of focus of this paper3). Although a

compromised node by TCP SYN flooding

cannot allow TCP connection requests from

others, it can broadcasts TCP SYN flooding

warning messages to the neighboring nodes

using other communication methods. The

neighboring nodes which has received TCP

SYN flooding warning messages can be

prepared against incoming TCP SYN flooding

attacks by increasing backlog queue, shortening

half-opened TCP connection keep alive time,

or decreasing the number of SYN retry.

The TCP connection is established using

three-way handshaking when a connection

request is received [10]. Fig.5 shows a Markov

model of TCP connection establishment process

3) Any new enhanced detection scheme can be employed to our

algorithm.
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when n-retransmission is allowed, and Table 1

describes each states.

State Description

0 initial state

S connection success state

Fi i-th failure state

E  connection drop state

Table 1 States for Markov model of TCP

connection establishment

Fig. 5 Markov model of TCP connection

establishment

We denote  is the maximum number of

retransmission and  is the probability that

the connection is established at -th retry.

This Markov chain starts from ‘0’ state and

turns to ‘ ’ states with the probability of

  . In general, ‘  ’state turns to ‘’

state with the probability of    , and

these transitions can occur until the maximum

number of retransmission(). If the number of

retransmission exceeds , then the state turns

to ‘ ’ states and the connection request is

dropped. We can compute the summation of

probability that the connection is succeeded as

(3).

            

 ⋯      ⋯     

  
  

 




  

 

  





(3)

We can express  as multiplex of  and

 as (4).  is the probability that the

connection is succeeded when the timeout is

infinite. There are some cases that the

connection is due to breakdown of

communication line or routers, etc.  is the

connection success function of timeout  which

tells how the connection success rate is

affected as the function of timeout  .

Maximum timeout is doubled as retransmission

increases followed by the exponential back-off

[9]. Therefore, the maximum timeout at ‘’

state would be  where  is the initial

timeout value (e.g.,  would be three seconds

in some LINUX systems) [9]. In this paper,

we assume that time to successful TCP

connections follows PDF (probability density

function) of normal distribution with mean

value  and standard deviation  . Therefore,

 which is connection success function of

timeout  is following CDF (cumulative

density function) of normal distribution as

depicted in (5).

   (4)

 


 
 ∞






 

   

 (5)

, where  
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As shown in (6), we can compute the total

success number of connection requests during

time  when request rate of TCP connection

is  and the maximal retransmission number

is .

  









   

   

 ⋯   

…    









×







  




  

 

 





×

  (6)

Upon TCP SYN attack, the system is not

compromised if  ×   , where  is the

number of SYN attacks per second,  is

the maximal expiration time for non-response

connections and  is the size of back log

queue.  is shown as (7) when we assume

that exponential back-off retransmission is

applied. In (7),  is the initial timeout value, 

is the maximal retransmission number, and 

is the miscellaneous overhead time such as the

delay between two time points a connection is

determined to be dropped and really dropped,

etc.

  
  



 (7)

If  × ≥  , the system will be

compromised after time  , which is

computed as (8).      
                                    

  

               (8)

We conducted performance analysis to

show the effectiveness of our strategy. Table

2 describes system parameters for our

performance analysis.

Table 2 System parameters

Parameter Description Default 

 Total Time  (seconds) 3600

 initial RTO   (seconds) 3

 time out   overhead 0


Default size of   Backlog 
queue (number of entries)

1024


Request rate of   normal 

connections
0.01



probability of   one 
connection is succeed when 

    is infinite
0.9



Mean value for   the normal 
distribution function for the 
connection success function

8



Standard   deviation for the 
normal distribution function 
for the connection success 

function

5

Fig. 6 TCP connection success rate by varying

retry numbers in TCP attack situation

Fig. 6 shows TCP connection success rate

by varying maximum retransmission numbers

and number of attacks per second on TCP
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SYN attack situation. TCP connection success

rate means how many incoming normal

connections are accepted and established

during time  .
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(b) Attack rate of 60 per second

Fig. 7 TCP connection success rate by varying

backlog queue size in TCP attack situation

We assume that  is 3600 seconds,  is 3,

 is 0,  is 1024,  is 0.01,  is 0.9,  is 8,

and  is 5. By decreasing the maximum

retransmission number, we can relieve the

damage of TCP SYN attack. However, with a

decreased maximum retransmission number,

some normal connections are refused even if

SYN attack is not occurred - the default

maximum retransmission in LINUX system is 5.

Fig. 7 shows TCP connection success rate

by varying backlog queue sizes ( ) and

maximum retransmission numbers when the

number of TCP SYN attack traffic is 30 and

60 per second, respectively. Increasing backlog

queue size could relive the damage of TCP

SYN attack at both of two attack rate cases.

As shown in our performance analysis, we

can see that dynamical change of

retransmission number and backlog queue size

in the sense of TCP SYN attack is able to

relive the damage of the attack with

minimized side effects. When a node has been

compromised, the damage of TCP SYN attack

on neighboring nodes could be relieved by

sensing the attack and dynamically changing

effective parameters (e.g., retry number and

backlog queue size).

5. Case Study of Fault-Tolerance : Checkpoint

and roll-back

In this section, we apply the dynamic

dependability policy shown in Fig. 2 to the

fault-tolerance case. Checkpoint and rollback

recovery is a cost-effective method of providing

fault tolerance against transient and intermittent

faults. We can reduce execution time of a task

by periodically saving process’s state on a

stable storage as checkpoints and by rolling

back to a recent checkpoint a failure. When

we define  is failure rate and  is checkpoint

overhead of a system, we can compute the

optimal checkpoint interval and expected

execution time during one checkpoint interval

for a task as Equation (9) and Equation (10),

respectively [11-12].

When we define  is failure rate and  is

checkpoint overhead of a system, we can
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compute the optimal checkpoint interval and

expected execution time during one checkpoint

interval for a task as Equation (9) and

Equation (10), respectively [11-12].

  




(9)

     
  (10)

When a node is failed by a fault, the failure

rate of neighboring nodes by the same fault

would not be as same as its original failure

rate any more. Therefore, the optimal

checkpoint interval for neighboring nodes

should be re-computed after parts of the

nodes are failed.

We define the optimal checkpoint interval of

two neighboring nodes (i.e., node 1 and node

2) as Equation (11). We assume that failure

rate of node 1 and node 2 are  and  ,

respectively.


 




 

 




(11)

By considering common fault dependency

presented in section 3, the optimal checkpoint

interval of each node should be modified as

Equation (12) when any neighboring node has

been failed. The failure rate of remaining node

would be changed to the affected failure rate

( or ), which can be computed from

Equation(1) and Equation (2). 
is the

optimal checkpoint interval of node 2 when

node 1 is failed, and 
is vice versa. As

mentioned in Section 3,  and  is the

common fault ratio of node 1 and node 2

between two neighboring nodes, respectively.

 is averaged impact factor of common faults

between node 1 and node 2.


 




 

   




 




 

   



    (12)

( 
: the optimal checkpoint interval for node

 when node  has been failed)

We compared the performance between the

conventional checkpoint scheme which has

static optimal checkpoint intervals and the

proposed checkpoint scheme which has

dynamic interval. Assumptions and system

parameters are as follows.

⚫ The system should roll back to the last

checkpoint when a fault occurs during an

execution because one of neighboring nodes

has been failed over already.

⚫ We assume that         , and

     .

⚫ Intervals among successive failures are

assumed to be the exponential distribution.

⚫ Total execution time () for a task is 1000
seconds, checkpoint overhead () is 1

second, roll back overhead () is 1 second.

⚫ Simulation is repeated 10000 times.

Fig. 8 shows the expected execution time

for a task of the proposed strategy (dynamic)

and conventional one (static) by varying

common fault ratio ( ) where failure rate ()

is 0.001 and common fault impact factor ()

is 0.1. We can see that dynamic scheme

shows better performance than static scheme

as  increases.
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Fig. 8 Expected execution time by varying 

(              )

Fig. 9 shows the expected execution time of

the proposed strategy (dynamic) and conventional

one (static) by varying failure rate () where

 is 0.2 and   . We can see that

dynamic scheme shows better performance

than static scheme in all cases. It seems odd

for the execution time slightly decreases as

the initial failure rate increases from

   to    in static scheme. The

remaining node is failed by the affected failure

rate () when a node is failed by common

fault.  is far larger than  when  is

above 0. In static scheme, the checkpoint

interval is determined by the initial failure rate

() while it should be computed by the

affected failure rate (). Therefore, the

checkpoint interval is computed far larger than

its real optimal interval and this increases the

expected execution time. The computed

checkpoint interval decreases and be getting

similar to its optimal checkpoint interval when

 increases. That is because the execution

time slightly decreases as the failure rate

increases from    to    in static

scheme.

Fig. 9 Expected execution time by varying

failure rate ()

(              )

6. Conclusion

In this paper, we present a threat prevention

policy for a networked computing node by

dynamically changing its dependability level

according to the threat situation on its

neighboring nodes. As case studies, we apply

our policy to a system against TCP SYN

flood attacks as a security problem and to a

checkpoint and roll back system against

transient faults as a fault-tolerance problem.

Our performance analysis shows that our

strategy can effectively mitigate the damage of

the attack or faults without serious

performance degradation. In the future, we will

apply our policy to various security or

fault-tolerance cases and conduct experimental

measurements.
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