DOI QR코드

DOI QR Code

펄프공정으로부터 배출되는 리그닌 추출물의 금속이온 분리를 위한 세라믹 분리막 개발

Development of Ceramic Membrane for Metal Ion Separation of Lignin Extract from Pulp Process

  • 신민창 (동국대학교 공과대학 화공생물공학과) ;
  • 최영찬 (한국에너지기술연구원 청정연료연구실) ;
  • 박정훈 (동국대학교 공과대학 화공생물공학과)
  • Shin, Min Chang (Department of Biochemical & Chemical Engineering, Dongguk University) ;
  • Choi, Young Chan (Clean Fuel Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Park, Jung Hoon (Department of Biochemical & Chemical Engineering, Dongguk University)
  • 투고 : 2017.03.30
  • 심사 : 2017.04.28
  • 발행 : 2017.04.30

초록

본 연구에서는 펄프공정으로부터 배출되는 리그닌 추출물 내의 금속이온분리를 위한 연구를 진행하였다. ${\alpha}$-Alumina 분말에 DMAc (N,N-dimethylacetamide) 용매와 PESf (Polyethersulfone) 고분자를 혼합하고 PVP (Polyvinylpyrrolidone) 분산제를 첨가하여 슬립 캐스팅 방법으로 분리막을 제조하였다. 분리막은 CFP (Capillary Flow Porometer) 장치를 통해 기공크기를 측정하고 FE-SEM (Field Emission Scanning Electron Microscope) 장치를 이용하여 실제 분리막 표면과 단면을 관찰하였다. 플럭스는 분리 실험장치를 이용하여 시간당 여과된 무게를 측정하여 계산하였다. 기공크기측정은 0 psi에서 30 psi까지 서서히 증가하는 승압조건에서 진행하였다. 분리막의 기공크기는 $0.4{\mu}m$ 크기를 가지며 플럭스는 분리막의 파울링에 의해 초기 플럭스 값인 $6.36kg{\cdot}m^{-2}{\cdot}h^{-1}$에서 $1.98kg{\cdot}m^{-2}{\cdot}h^{-1}$으로 감소하여 3시간 이후부터 일정해지는 것을 확인하였다. 투과 실험 후 막 오염물질은 간단한 세척을 통해 제거 가능하였다. 분리실험을 통해 초기 리그닌 추출물 내에 포함되어 있던 Na은 69%만큼 줄었고, Fe은 87%, K은 95%, Ca은 93%, Mg은 96%만큼 제거됨을 보였다.

In this study, a study was carried out for the separation of metal ions in lignin extract discharged from the pulp process. alumina powders were mixed with DMAc (N, N-dimethylacetamide) solvent and PESf (Polyethersulfone) polymer, PVP (polyvinylpyrrolidone) dispersant was added and slip casting method was used to prepare the membrane. The membrane was measured for pore size through a CFP (Capillary Flow Porometer) device and the surface and cross-section of the membrane were observed through a FE-SEM (Field Emission Scanning Electron Microscope). The flux was calculated by measuring the filtered weight per hour using a separation experiment device. Pore size measurements were performed under increasing pressure from 0 psi to 30 psi. The pore size of the membrane was $0.4{\mu}m$ and the flux decreased from the initial flux value of $6.36kg{\cdot}m^{-2}{\cdot}h^{-1}$ to $1.98kg{\cdot}m^{-2}{\cdot}h^{-1}$ due to the fouling of the membrane. After the permeation experiment, membrane contaminants were removed by simple washing. Separation experiments showed that Na contained in the initial lignin extract was reduced by 69%, Fe was removed by 87%, K by 95%, Ca by 93% and Mg by 96%.

키워드

참고문헌

  1. T. C. Merkel, H. Lin, X. Wei, and R. Baker, "Power plant post-combustion carbon dioxide capture: an opportunity for membranes", J. Membr. Sci., 359, 126 (2010). https://doi.org/10.1016/j.memsci.2009.10.041
  2. M. T. M. Pendergast and E. M. V. Hoek, "A review of water treatment membrane nanotechnologies", Energy Environ. Sci., 4, 1946 (2011). https://doi.org/10.1039/c0ee00541j
  3. G. Ciardelli, L. Corsi, and M. Marcucci, "Membrane separation for wastewater reuse in the textile industry", Resour. Conserv. Recycl., 31, 189 (2001). https://doi.org/10.1016/S0921-3449(00)00079-3
  4. F. Fu and Q. Wang, "Removal of heavy metal ions from wastewaters: A review", J. Environ. Manag., 92, 407 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  5. D. W. Lee, J. S. Bae, Y. J. Lee, S. J. Park, J. C. Hong, B. H. Lee, C. H. Jeon, and Y. C. Choi, "Two-in-One fuel combining sugar cane with low rank coal and its $CO_2$ reduction effects in pulverized- coal power plants", Environ. Sci. Technol., 47, 1704 (2013).
  6. J. S. Bae, D. W. Lee, Y. J. Lee, S. J. Park, J. H. Park, J. C. Hong, J. G. Kim, S. P. Yoon, H. T. Kim, C. Han, and Y. C. Choi, "Improvement in coal content of coal-water slurry using hybrid coal impregnated with molasses", Powder Technol., 254, 72 (2014). https://doi.org/10.1016/j.powtec.2013.12.032
  7. S. J. Park, D. W. Lee, Y. J. Lee, J. S. Bae, J. C. Hong, J. G. Kim, J. H. Park, J. H. Park, J. S. Shin, and Y. C. Choi, "Hybrid fuel preparation combining glycerol-derived hydrogel and coal and its characterization", Ind. Eng. Chem. Res., 52, 16206 (2013). https://doi.org/10.1021/ie402459v
  8. J. S. Bae, D. W. Lee, Y. J. Lee, S. J. Park, J. H. Park, J. G. Kim, C. Han, and Y. C. Choi, "An investigation of the evaporation behavior of bioliquid in the pores and its application to hybrid coal combining biomass with coal", Appl. Therm. Eng., 90, 199 (2015). https://doi.org/10.1016/j.applthermaleng.2015.03.025
  9. J. Wang, C. Li, K. Sakanishi, T. Nakazatob, H. Taob, T. Takanohashia, T. Takaradac, and I. Saito, "Investigation of remaining major and trace elements in clean coal generated by organic solvent extraction", Fuel, 84, 12 (2005).
  10. J. W. Che, H. J. Lee, and J. H. Park, "Preparation and characterization of ${\alpha}$-alumina hollow fiber membrane", Membr. J., 26, 212 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.212
  11. W. J. Koros, Y. H. Ma, and T. Shimidzu, "Terminology for membranes and membrane process", Pure Appl. Chem., 68, 1479 (1996). https://doi.org/10.1351/pac199668071479
  12. I. S. Chang, P. L. Clech, B. Jefferson, and S. Judd, "Membrane fouling in membrane bioreactors for wastewater treatment", J. Environ. Eng., 128, 1018 (2002). https://doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1018)
  13. I. Chung, "The present and the future of anaerobic treatment of pulp & paper wastewater", Prospect. Ind. Chem., 7, 3 (2004).