DOI QR코드

DOI QR Code

Study of Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of Mt. Baekdu

백두산 화산활동 평가를 위한 화산가스 및 온천수에 대한 연구

  • Lee, Sangchul (Department of Geological Sciences, Pusan National University) ;
  • Yun, Sung-Hyo (Department of Earth Science Education, Pusan National University)
  • 이상철 (부산대학교 지질환경과학과) ;
  • 윤성효 (부산대학교 지구과학교육과)
  • Received : 2017.02.13
  • Accepted : 2017.03.28
  • Published : 2017.04.28

Abstract

This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu during the period from July 2015 to August 2016. Also, we confirmed the errors that $HCO_3{^-}$ concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved $CO_2$ in hot spring waters was analyzed using gas chromatograph in Lee et al. (2014). Improving this, from 2015, we used TOC-IC to analysis dissolved $CO_2$. Also, we analyzed the $Na_2CO_3$ standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the $HCO_3{^-}$ concentrations of 2014 samples. During the period of study, $CO_2/CH_4$ in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction conditions, and carbon in volcanic gases become more favorable to distribute into $CH_4$ or CO than $CO_2$. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of $CO_2$ which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cation, and some trace elements (As, Cd, Re).

본 연구에서는 2015년 7월부터 2016년 8월까지 백두산 주롱 온천 지역에서 화산가스 및 온천수를 채취하여 분석을 실시하였다. 또한 이전 연구(Lee et al. 2014)에서 보고된 온천수의 측정값 중 $HCO_3{^-}$ 농도에 오류가 있음을 확인하고, 이를 개선하고자 했다. 온천수의 용존 $CO_2$는 이전 연구에서는 가스 크로마토그래프를 이용하여 분석하였지만, 이를 개선하여 2015년부터 TOC-IC를 이용하여 분석을 실시했다. 또한, 여러 농도의 $Na_2CO_3$ 표준 시료를 GC로 분석하여, 실제 농도와 표준시료 사이의 상관관계를 확인하였다. 그리고 이를 토대로 2014년 온천수의 용존 $CO_2$ 농도를 추정하고자 했지만, 실제 주롱(Julong) 온천 주변의 물을 채취하여 GC로 분석했을 때는 이 상관관계가 잘 적용되지 않아서 2014년 온천수의 용존 $CO_2$ 농도를 추정할 수가 없었다. 연구기간 동안 화산가스 내 $CO_2/CH_4$의 농도는 꾸준히 감소하였는데, 이에 대하여 두 가지 해석이 가능하다. 첫 번째는 화산체 내부의 환경이 조금 더 환원환경에 가까워져 상대적으로 화산가스 내 탄소가 $CO_2$ 보다는 $CH_4$ 또는 CO로 분배되기 유리해 진 것이다. 두 번째 가능성은 화산가스와 물의 상호작용이 강화되어 물에 대한 용해도가 훨씬 높은 $CO_2$의 농도가 상대적으로 감소한 것이다. 일반적으로 화산가스가 물에 희석되는 현상(scrubbing)의 영향은 화산활동이 활발한 시기보다는 잠잠한 시기에 강화된다. 한편, 온천수의 분석은 화산가스 연구에서 중요한 산성기체 성분의 음이온들과 주요 양이온, 그리고 Cd, Re, As에 대해 이루어졌다.

Keywords

References

  1. Aiuppa, A. (2009) Degassing of halogens from basaltic volcanism: Insights from volcanic gas observations. Chemical Geology, v.263, p.99-109. https://doi.org/10.1016/j.chemgeo.2008.08.022
  2. Crowe, B.M., Finnegan, D.L., Zoller, W.H. and Boynton, W.V. (1987) Trace element geochemistry of volcanic gases and particles from 1983-1984 eruptive episodes of Kilauea volcano. Geophysical Research, v.92, p.13708-13714. https://doi.org/10.1029/JB092iB13p13708
  3. Duffell, H.J., Oppenheimer, C., Pyle, D.M., Galle, B., McGonigle, A.J.S. and Burton, M.R. (2003) Changes in gas composition prior to a minor explosive eruption at Masaya volcano, Nicaragua. Volcanology and Geothermal Research, v.126, p.327-339. https://doi.org/10.1016/S0377-0273(03)00156-2
  4. Giggenbach, W.F. (1987) Redox processes governing the chemistry of fumarolic gas discharges from white Island, New Zealand. Applied Geochmistry, v.2, p.143-161. https://doi.org/10.1016/0883-2927(87)90030-8
  5. Han, Y.C. and Huh, Y.S. (2009) A geochemical reconnaissance of the Duman (Tumen) River and the hot springs of Mt. Baekdu (Changbai): Weathering of volcanic rocks in mid-latitude setting. Chemical Geology, v.264, p.162-172. https://doi.org/10.1016/j.chemgeo.2009.03.004
  6. Jiang, Z., Yu, S., Yoon, S.M. and Choi, K.H. (2013) Damage and socio-economic impact of volcanic ash. Journal of the Korean Earth Science Society, v.34, p.536-549. (in Korean) https://doi.org/10.5467/JKESS.2013.34.6.536
  7. Lee, D.S., Choi, S.C., Oh, C.W., Seo, M.H. and Ryu, I.C. (2013a) The study on the possibility of using satellite in monitoring precursor of magma activity in the Baegdusan Volcano. The Petrological Society of Korea, v.22, p.35-47. (in Korean) https://doi.org/10.7854/JPSK.2013.22.1.035
  8. Lee, S.C., Kang, J.C., Yun, S.H. and Jeong, H.Y. (2013b) Evaluation of the Giggenbach bottle method with artificial fumarolic gases. Journal of the Korean Earth Science Society, v.34, p.681-692. (in Korean) https://doi.org/10.5467/JKESS.2013.34.7.681
  9. Lee, S.Y., Lee, S.C., Yang, K.H. and Jeong, H.Y. (2012) A technical note on monitoring methods for volcanic gases. Journal of the Petrological Society of Korea, v.21, p.415-429. (in Korean) https://doi.org/10.7854/JPSK.2012.21.4.415
  10. Lee, S.C., Yun, S.H. and Jeong, H.Y. (2014) A geochemical study of volcanic gases and hot spring water at Mt. Baekdu. Journal of the Geological Society of Korea, v.50, p.811-820. (in Korean) https://doi.org/10.14770/jgsk.2014.50.6.811
  11. Lide, D.R., Baysinger, G., Berger, L.I., Goldberg, R.N., Kehilan, H.V., Kuchitsu, K., Rosenblatt, G., Roth, D.L. and Zwillinger, D. (2004) CRC Handbook of Chemistry and Physics, 85th Ed. Section 8: Analytical Chemistry. National Institute of Standards and Technology, CRC Press, p.86-88.
  12. Lopez, T., Ushakov, S., Izbekov, P., Tassi, F., Cahill, C., Neill, O. and Werner, C. (2013) Constraints on magma processes, subsurface conditions, and total volatile flux at Bezymianny Volcano in 2007-2010 from direct and remote volcanic gas measurements. Volcanology and Geothermal Research, v.263, p.92-107. https://doi.org/10.1016/j.jvolgeores.2012.10.015
  13. Mackenzie, J.M. and Canil, D. (2008) Volatile heavy metal mobility in silicate liquids: Implications for volcanic degassing and eruption prediction,. Earth and Planetary Science Letters, v.269, p.488-496. https://doi.org/10.1016/j.epsl.2008.03.005
  14. Mambo, V.S. and Yoshida, M. (1993) Behavior of arsenic in volcanic gases. Geochemical Journal, v.27, p.351-359. https://doi.org/10.2343/geochemj.27.351
  15. Notsu, K. and Mori, T. (2010) Chemical monitoring of volcanic gas using remote FT-IR spectroscopy at several active volcanoes in Japan. Applied Geochemistry, v.25, p.505-512. https://doi.org/10.1016/j.apgeochem.2010.01.008
  16. Oh, C.W., Choi, S.C., Lee, D.S., Kim, M.D., Park, J.H. and Seo, M.H. (2013) A preliminary study on the correlation between GRACE satellite Geoid data variation and volcanic magma activity. Journal of the Korean Earth Science Society, v.34, p.550-560. (in Korean) https://doi.org/10.5467/JKESS.2013.34.6.550
  17. Ohba, T., Hirabayashi, J.I. and Yoshida, M. (1994) Equilibrium temperature and redox state of volcanic gas at Unzen volcano, Japan. Journal of Volcanology and Geothermal Research, v.60, p.263-272. https://doi.org/10.1016/0377-0273(94)90055-8
  18. Ohba, T., Hirabayashi, J.I., Nogami, K., Kusakabe, M. and Yoshida, M. (2008) Magma degassing process during the eruption of Mt. Unzen, Japan in 1991 to 1995 Mmodeling with the chemical composition of volcanic gas. Volcanology and Geothermal Research, v.175, p.120-132. https://doi.org/10.1016/j.jvolgeores.2008.03.040
  19. Ohba, T., Sawa, T., Taira, N., Yang, T.F., Lee, H.F., Lan, T.F., Ohwada, M., Morikawa, N. and Kazahaya, K. (2010) Magmatic fluids of Tatun volcanic group, Taiwan. Applied Geochemistry, v.25, p.513-523. https://doi.org/10.1016/j.apgeochem.2010.01.009
  20. Ossaka, J., Ozawa, T., Nomura, T., Ossaka, T., Hirabayashi, J., Takaesu, A. and Hayashi, T. (1980) Variation of chemical compositions in volcanic gases and waters at Kusatsu-Shirane Volcano and its activity in 1976. Bulletin of Volcanology, v.43, p.207-216. https://doi.org/10.1007/BF02597622
  21. Stremmer, W., Ortega, I., Siebe, C. and Grutter, M. (2011) Gas composition of Popocatepetl Volcano between 2007 and 2008: FTIR spectroscopic measurements of an explosive event and during quiescent degassing. Earth and Planetary Science Letters, v.301, p.502-510. https://doi.org/10.1016/j.epsl.2010.11.032
  22. Symonds, R.B., Gerlach, T.M. and Reed, M.H. (2001) Magmatic gas scrubbing: implications for volcano monitoring. Volcanology and Geothermal Research, v.108, p.303-341. https://doi.org/10.1016/S0377-0273(00)00292-4
  23. Yun, S.H. (2013a) A study on the change of magma activity from 2002 to 2009 at Mt. Baekdusan using surface displacement. Journal of the Korean Earth Science Society, v.34, p.470-478. (in Korean) https://doi.org/10.5467/JKESS.2013.34.6.470
  24. Yun, S.H. (2013b) Volcanological interpretation of historical eruptions of Mt. Baekdusan volcano. Journal of the Korean Earth Science Society, v.34, p.456-469. (in Korean) https://doi.org/10.5467/JKESS.2013.34.6.456
  25. Yun, S.H. and Lee, J.H. (2012) Analysis of unrest sign of activity at the Baegdusan Volcano. Journal of the Petrological Society of Korea, v.21, p.1-12. (in Korean) https://doi.org/10.7854/JPSK.2012.21.1.001