DOI QR코드

DOI QR Code

Occurrence and Genesis of Obsidian in Gombawi Welded Tuff, Ulleung Island, Korea

울릉도 곰바위용결응회암 내 흑요암의 산출특징과 성인

  • Im, Ji Hyeon (Korea Institute of Geoscience and Mineral Resources) ;
  • Choo, Chang Oh (Department of Geology, Kyungpook National University)
  • Received : 2017.02.20
  • Accepted : 2017.03.28
  • Published : 2017.04.28

Abstract

The purpose of this study is to provide the information on genesis of obsidian occurring in the southwestern part of Ulleung Island, Korea, and to discuss its implications for volcanic activity through volcanological and mineralogical properties of obsidian. Obsidian occurs locally at the lower part of the Gombawi welded tuff, showing various complex textures and flow banding. Though obsidian is mostly homogeneous, it is closely associated with alkali feldspar phenocrysts, reddish tuff, and greyish trachyte fragments. The obsidian occurs as wavy, lenticular blocks or lamination composed of fragments. Cooling fractures developed on obsidian glass are characterized by perlitic cracks, orbicular or spherical cracks, indicating that obsidian rapidly quenched to form an amorphous silica-rich phase. It is evident that hydration took place preferentially at the outer rim relative to the core of obsidian, forming alteration rinds. The glassy matrix of obsidian includes euhedral alkali feldspars, diopside, biotite, ilmenite, and iron oxides. Microlites in glassy obsidian are composed mainly of alkali feldspars and ilmenite. Quantitative analysis by EPMA on the obsidian glass part shows trachytic composition with high iron content of 3 wt.%. Accordingly, obsidian formed with complex textures under a rapid cooling condition on surface ground, with slight rheomorphism. Such results might be induced by collapse of lava dome or caldera, which produced the block-and-ash flow deposit and the transportation into valley while keeping high temperatures.

이 연구의 목적은 울릉도 남서부 지역에 분포하는 흑요암의 화산학적, 광물학적 특징을 통하여 흑요암의 성인과 산출의미를 고찰하는 데 있다. 흑요암은 곰바위용결응회암 하부에서 국부적으로 발달하며, 다양하고 복잡한 조직과 유동띠가 관찰된다. 흑요암은 알칼리장석 반정과 응회암 및 조면암의 암편과 혼재하여 산출된다. 흑요암은 파동형, 렌즈상의 덩어리로 산출되거나 파쇄된 흑요암 입자들로 인해 얇은 층리로 발달한다. 진주상 균열, 둥근 또는 구형균열과 같은 냉각균열이 특징적으로 발달하는데, 이는 빠르게 냉각하여 규산질이 풍부한 비정질 상태의 흑요암이 형성되었음을 지시한다. 수화작용은 흑요암의 가장자리에서 상대적으로 현저하여 변질띠를 이룬다. 흑요암의 유리질 기질에는 자형의 새니딘과 아노소클레이스 같은 알칼리장석 반정 외에도, 투휘석, 흑운모, 티탄철석, 철산화물 등이 수반된다. 특히 산점상의 미세결정들은 대부분 알칼리장석류와 티탄철석으로 구성된다. EPMA 정량분석 결과, 흑요암의 유리 기질부는 조면암질 조성을 보이며, 철 함량은 약 3 wt.%로 높은 편이다. 본 흑요암은 용암돔이나 칼데라의 붕괴에 의하여 고온상태에서 역-화산재 흐름 퇴적물이 계곡부로 운반된 후, 차가운 지표면과 접촉하였으며 유동성을 띠는 가운데서 급랭하여 형성된 것으로 보인다.

Keywords

References

  1. Aines R.D. and Rossman, G.R. (1984) Water in minerals? A peak in the infrared. Journal of Geophysical Research, v.89, B6. p.4059-4071. https://doi.org/10.1029/JB089iB06p04059
  2. Branney, M.J. and Kokelaar, P. (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite, Bulletine of Volcanology, v.54, p.504-520. https://doi.org/10.1007/BF00301396
  3. Cabrera A., Weinberg, R.F. and Wright, H.M.N. (2015) Magma fracturing and degassing associated with obsidian formation: The explosive-effusive transition. Journal of Volcanology and Geothermal Research, v.298, p.71-84. https://doi.org/10.1016/j.jvolgeores.2014.12.014
  4. Castro, J.M., Manga, M. and Martin, M.C. (2005) Vesiculation rates of obsidian domes inferred from $H_2O$ concentration profiles. Geophysical Research Letters, v.32, 21307. https://doi.org/10.1029/2005GL024029
  5. Clay, P.L., O'Driscoll, B., Gertisser, R., Busemann, H., Sherlock, S.C. and Kelley, S.P. (2012) Textural characterization, major and volatile element quantification and Ar-Ar systematics of spherulites in the Rocche Rosse obsidian flow, Lipari, Aeolian Islands: a temperature continuum growth model. Contributions to Mineralogy and Petrology, v.165, p.373-395.
  6. Davis, K.M. and Tomozawa, M. (1996) An infrared spectroscopic study of water-related species in silica glasses. Journal of Non-Crystalline Solids, v.201, p.177-198. https://doi.org/10.1016/0022-3093(95)00631-1
  7. Efimov, A.M. and Pogareva, V.G. (2006) IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to $5000cm^{-1}$ region. Chemical Geology, v.229, p.198-217. https://doi.org/10.1016/j.chemgeo.2006.01.022
  8. Fink, J.H. (1983) Structure and emplacement of a rhyolite obsidian flow: Little Glass Mountain, Medicine Lake Highland, Northern California. Geological Society of America Bulletin, v.94, p.362-380. https://doi.org/10.1130/0016-7606(1983)94<362:SAEOAR>2.0.CO;2
  9. Freundt, A., Wilson, C.J.M. and Carey, S.N. (2000) Ignimbrites and block-and-ash flow deposits. In: Encyclopedia of Volcanoes. Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. and Stix, J. (Eds.), Part IV. Explosive volcanism. Academic Press. San Diego, p.581-599.
  10. Friedman, I. and Smith, R.L. (1958) The deuterium content of water in some volcanic glasses. Geochimica et Cosmochimica Acta, v.15, p.218-228. https://doi.org/10.1016/0016-7037(58)90059-0
  11. Friedman, I. and Long, W. (1984) Volcanic glasses, their origins and alteration processes. Journal of Non-Crystalline Solids, v.67, p.127-133. https://doi.org/10.1016/0022-3093(84)90144-3
  12. Frondel, C. (1982) Structural hydroxyl in chalcedony (Type B quartz). American Mineralogist, v.67, p.1248-1257.
  13. Guest, J.E. and Rogers, P.S. (1967) The sintering of glass and its relationship to welding in ignimbrites. Proceedings of the Geological Society of London, 1641, p.174-177.
  14. Grunder, A. and Russell, J.K.R. (2005) Welding processes in volcanology: insights from field, experimental, and modeling studies. Journal of Volcanology and Geothermal Research, v.142, p.1-9. https://doi.org/10.1016/j.jvolgeores.2004.10.010
  15. Heap, M.J., Kolzenburg, S., Russell, J.K., Campbell, M.E., Welles, J., Farquharson, J.I. and Ryana, A. (2014) Conditions and timescales for welding block-and-ash flow deposits. Journal of Volcanology and Geothermal Research, v.289, p.202-209. https://doi.org/10.1016/j.jvolgeores.2014.11.010
  16. Heide, K. and Heide, G. (2011) Vitreous state in nature-Origin and properties. Chemie der Erde, v.71. p.305-335. https://doi.org/10.1016/j.chemer.2011.10.001
  17. Hildreth, W. (1979) The Bishop Tuff: Evidence for the origin of compositional zonation in silicic magma chambers. Geological Society of America Special Papers, v.180, p.43-76.
  18. Hwang, S.K., Hwang, J.H. and Kwon, C.W. (2012) Geological report of the Ulleung Sheet. Korea Institute of Geoscience and Mineral Resources, 84p.
  19. Im, J.H. and Choo, C.O. (2015) A Study on tree-ring dating and speciation of charcoal found in pumiceous deposit of the Quaternary Nari caldera, Ulleung Island, Korea. Economic and Environmental Geology, v.48, p.501-508 (in Korean with English abstract). https://doi.org/10.9719/EEG.2015.48.6.501
  20. Im, J.H., Shim, S.H., Choo, C.O., Jang, Y.D. and Lee, J.S. (2012) Volcanological and paleoenvironmental implications of charcols of the Nari Formation in Nari Caldera, Ulleung Island, Korea. Geosciences Journal, v.16, p.105-114. https://doi.org/10.1007/s12303-012-0020-9
  21. Jambon, J., Zhang, Y. and Stolper, E.M. (1992) Experimental dehydration of natural obsidian and estimation of $D_{H2O}$ at low water contents. Geochimica et Cosmochimica Acta, v.56, p.2931-2935. https://doi.org/10.1016/0016-7037(92)90369-T
  22. Jezek, P.A. and Bible, D.C. (1978) Natural hydration and ion exchange of obsidian: an electron microprobe study. American Mineralogist, v.63, p.266-273.
  23. Kim, Y.K. and Lee, D.S. (1983) Petrology of alkali volcanic rocks in northern part of Ulrung Island. Korean Institute and Mining Geology, v.16, p.19-36 (in Korean with English abstract).
  24. Kim, G.B., Cronin, S.J., Yoon, W.S. and Sohn, Y.K. (2014) Post 19 ka B.P. eruptive history of Ulleung Island, Korea, inferred from an intra-caldera pyroclastic sequence. Bulletin of Volcanology, v.76, p.802-828. https://doi.org/10.1007/s00445-014-0802-1
  25. Kim, K.H., Tanaka, T., Nagao, K. and Jang, S.K. (1999) Nd and Sr isotopes and K-Ar ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea, Geochemical Journal, v.33, p.317-341. https://doi.org/10.2343/geochemj.33.317
  26. Lipman, P.W. (1965) Chemical comparison of glassy and crystalline volcanic rocks. US Geol Survey Bulletin 1201-D. D1-D24.
  27. Lipman, P.W., Christiansen, R.L. and van Alstine, R.E. (1969) Retention of alkalies by calc-alkalic rhyolite during crystallization and hydration American Mineralogist, v.54, p.285-291.
  28. Madejova, J. and Komadel, P. (2001) Baseline studies of the Clay Minerals Society source clays: Infrared methods. Clays and Clay Minerals, v.49, p.410-432. https://doi.org/10.1346/CCMN.2001.0490508
  29. Michol, K.A., Russell, J.K. and Andrews, G.D.M. (2008) Welded block and ash flow deposits from Mount Meager, British Columbia, Canada. Journal of Volcanology and Geothermal Research, v.169, p.121-144.
  30. Min, K.D., Kim, O.J., Yun, S, Lee, D.S. and Kim, K.H. (1988) Applicability of Plate Tectonics to the Post- Late Cretaceous Igneous Activity and Mineralization in the Southern Part of South Korea (II). Journal of the Geological Society of Korea, v.24, p.11-40.
  31. Moore, P.R. (2012) Obsidian sources of the Taupo volcanic zone, central North Island, New Zealand. Rapa Nui Journal, v.26, p.17-28.
  32. Mungall, J.E. and Martin, R.F. (1994) Severe leaching oftrachytic glass without devitrification, Terceira, Azores. Geochimica Cosmochimica Acta, v.52, p.1295-1303.
  33. Noble, D.C. (1965) Ground-water leaching of sodium from quickly cooled volcanic rocks. American Mineralogist, v.50, p.289.
  34. Noble, D.C. (1967) Sodium, potassium and ferrous iron contents of some secondarily hydrated natural silicic glasses. American Mineralogist, v.52, p.280-286.
  35. Okuno, M., Shiihara, M., Torii, M., Nakamura, T., Kim, K., Domitsu, H., Moriwaki, H. and Oda, M. (2010) AMS radiocarbon dating of Holocene tephra layers on Ulleung Island, South Korea. Radiocarbon, v.52, p.1465-1470. https://doi.org/10.1017/S0033822200046555
  36. Petit, J.-C., Della Mea, G., Dran, J.-C., Magonthier, M. C., Mando, P.A. and Paccagnella, A. (1990) Hydratedlayer formation during dissolution of complex silicate glasses and minerals. Geochimica Cosmochimica Acta, v.54, p.1941-1955. https://doi.org/10.1016/0016-7037(90)90263-K
  37. Shields, J.K., Mader, H.M., Caricchi, L., Tuffenc, H., Mueller, S., Pistone, M. and Baumgartner, L. (2016) Unravelling textural heterogeneity in obsidian: Shearinduced outgassing in the Rocche Rosse flow. Journal of Volcanology and Geothermal Research, v.310, p.137-158. https://doi.org/10.1016/j.jvolgeores.2015.12.003
  38. Song, Y.S., Park, K.H. and Park, M.E. (1999) Major, rareearth and trace geochemsitry of Ulleungdo volcanic rocks. Journal of the Petrological Society of Korea, v.8, p.57-70 (in Korean with English abstract).
  39. Song, Y.S., Park, M.E. and Park, K.H. (2006) Ages and Evolutions of the Volcanic Rocks from Ulleung-do and Dok-do. Journal of the Petrological Society of Korea, v.5, p.72-80 (in Korean with English abstract).
  40. Soriano, C., Zafrilla, S., Marti, J., Bryan, S., Cas, R. and Ablay, G. (2002) Welding and rheomorphism of phonolitic fallout deposits from the Las Canadas caldera, Tenerife, Canary Islands. Geological Society of America Bulletin, v.114, p.883-895. https://doi.org/10.1130/0016-7606(2002)114<0883:WAROPF>2.0.CO;2
  41. Stevenson, C.M., Knaus, E., Mazer, J.M., Bates, J.K. (1993) Homogeneity of water content in obsidian from the coso volcanic field: Implications for obsidian hydration dating. Geoarchaeology, v.8, p.371-384. https://doi.org/10.1002/gea.3340080503
  42. Tazaki, K., Tiba, T., Aratani, M. and Miyachi, M. (1992) Structural water in volcanic glass. Clays and Clay Minerals, v.40, p.122-127. https://doi.org/10.1346/CCMN.1992.0400113
  43. Westrich, H.R., Stockman, H.W. and Eichelberger, J.C. (1988) Degassing of rhyolitic magma during ascent and emplacement. Journal of Geophysical Research: Solid Earth, v.93, Issue B6, p.6503-6511. https://doi.org/10.1029/JB093iB06p06503
  44. Wolf, J.A. and Wright, J.V. (1981) Rheomorphism of welded tuffs. Journal of Volcanology and Geothermal Research, v.10, p.13-34. https://doi.org/10.1016/0377-0273(81)90052-4
  45. Wright, H.M.N. and Cashman, K.V. (2013) Compaction and gas loss in welded pyroclastic deposits: evolution of porosity and permeability in the Shevlin Park Tuff. Geological Society of America Bulletin. v.126, p.234-247.