DOI QR코드

DOI QR Code

High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents

  • Received : 2016.11.02
  • Accepted : 2017.01.20
  • Published : 2017.04.28

Abstract

Sepsis is a major health problem worldwide, with an extremely high rate of morbidity and mortality, partly due to delayed diagnosis during early disease. Currently, sepsis diagnosis requires bacterial culturing of blood samples over several days, whereas PCR-based molecular diagnosis methods are faster but lack sensitivity. The use of biosensors containing nucleic acid aptamers that bind targets with high affinity and specificity could accelerate sepsis diagnosis. Previously, we used the systematic evolution of ligands by exponential enrichment technique to develop the aptamers Antibac1 and Antibac2, targeting the ubiquitous bacterial peptidoglycan. Here, we show that these aptamers bind to four gram-positive and seven gram-negative bacterial sepsis agents with high binding efficiency. Thus, these aptamers could be used in combination as biological recognition elements in the development of biosensors that are an alternative to rapid bacteria detection, since they could provide culture and amplification-free tests for rapid clinical sepsis diagnosis.

Keywords

References

  1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. 2008. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 36: 296-327. https://doi.org/10.1097/01.CCM.0000298158.12101.41
  2. Angus DC, Van der Poll, T. 2013. Severe sepsis and septic shock. N. Engl. J. Med. 369: 840-851. https://doi.org/10.1056/NEJMra1208623
  3. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29: 1303-1310. https://doi.org/10.1097/00003246-200107000-00002
  4. Boedicker JQ, Li L, Kline TR, Ismagilov RF. 2008. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab. Chip 8: 1265-1272. https://doi.org/10.1039/b804911d
  5. Kaufman D, Fairchild KD. 2004. Clinical microbiologv of bacterial and fungal sepsis in very-low-birth-weight infants. Clin. Microbiol. Rev. 17: 638-643. https://doi.org/10.1128/CMR.17.3.638-680.2004
  6. Lee A, Mirrett S, Reller Barth L, Weinstein MP. 2007. Detection of bloodstream infections in adults: how many blood cultures are needed? J. Clin. Microbiol. 47: 3546-3548.
  7. Lazcka O , Del Campo FJ, M unoz FX. 2007. Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22: 1205-1217. https://doi.org/10.1016/j.bios.2006.06.036
  8. Su L, Jia W, Hou C, Yu L. 2011. Microbial biosensors: a review. Biosens. Bioelectron. 26: 1788-1799. https://doi.org/10.1016/j.bios.2010.09.005
  9. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249: 505-510. https://doi.org/10.1126/science.2200121
  10. Ellington AD, S zostak JW. 1 990. In vitro s election of RNA molecules that bind specific ligands. Nature 346: 818-822. https://doi.org/10.1038/346818a0
  11. Ferreira IM, De Souza Lacerda CM, De Faria SL, Correa CR, De Andrade ASR. 2014. Selection of peptidoglycan-specific aptamers for bacterial cells identification. Appl. Biochem. Biotechnol. 174: 2548-2556. https://doi.org/10.1007/s12010-014-1206-6
  12. Schleifer KH, Kandler O. 1972. Peptidoglycan. Types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477.
  13. Marton S, Cleto F, Krieger MA, Cardoso J. 2016. Isolation of an aptamer that binds specifically to E. coli. PLoS One 11: e0153637. https://doi.org/10.1371/journal.pone.0153637
  14. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real time quantitative PCR and the $2{\Delta}CT$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  15. Torres-Chavolla E, Alocilja EC. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 26: 3175-3182.
  16. Amaya E, Caceres M, Fang H, Ramirez AT, Palmgren AC, Nord CE. 2009. Extended-spectrum $\beta$-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit in Leon, Nicaragua. Int. J. Antimicrob. Agents 33: 386-387. https://doi.org/10.1016/j.ijantimicag.2008.10.004
  17. Gray J, Arvelo W, McCracken J, Lopez B, Lessa FC, Kitchel B, et al. 2012. An outbreak of Klebsiella pneumoniae late-onset sepsis in a neonatal intensive care unit in Guatemala. Am. J. Infect. Control 40: 516-520. https://doi.org/10.1016/j.ajic.2012.02.031
  18. Zakariya BP, Vishnu Bhat B, Harish BN, Arun Babu T, Joseph NM. 2012. Risk factors and outcome of Klebsiella pneumoniae sepsis among newborns. Curr. Pediatr. Res. 16: 115-118.
  19. Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. 2005. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob. Agents Chemother. 49: 1306-1311. https://doi.org/10.1128/AAC.49.4.1306-1311.2005
  20. Richards MJ, Edwards JR, Culver DH, Gayne RP. 1999. Nosocomial infections in medical intensive care units in the United States: National Nosocomial Infections Surveillance System. Crit. Care Med. 27: 887-892. https://doi.org/10.1097/00003246-199905000-00020
  21. Lahmer T, Messer M, Schnappauf C, Schmidt A, Schmid RM, Huber W. 2014. Acinetobacter baumannii sepsis is fatal in medical intensive care unit patients: six cases and review of literature. Anaesth. Intensive Care 42: 541-684.
  22. Patrick M, Kettera M, Guentzela N, Schafferb B, Herzigb M, Wub X, et al. 2014. Severe Acinetobacter baumannii sepsis is associated with elevation of Pentraxin 3. Infect. Immun. 82: 3910-3918. https://doi.org/10.1128/IAI.01958-14
  23. De Pedro M, Cava F. 2015. Structural constraints and dynamics of bacterial cell wall architecture. Front. Microbiol. 6: 449.
  24. Xiao Z, Shangguan D, Cao Z, Fang X, Tan W. 2008. Cell-specific internalization study of an aptamer from whole cell selection. Chem. Eur. J. 14: 1769-1775. https://doi.org/10.1002/chem.200701330
  25. Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71: 635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  26. Vollmer W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. 32: 287-306. https://doi.org/10.1111/j.1574-6976.2007.00088.x
  27. Bayer ME. 1991. Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. J. Struct. Biol 107: 268-280. https://doi.org/10.1016/1047-8477(91)90052-X
  28. Keefe AD, Pai S, Ellington A. 2010. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9: 537-550. https://doi.org/10.1038/nrd3141
  29. Lee JF, Stovall GM, Ellington AD. 2006. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10: 282-289. https://doi.org/10.1016/j.cbpa.2006.03.015
  30. Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC. 2013. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 3: 1863. https://doi.org/10.1038/srep01863
  31. Song S, Wang L, Li J, Zhao J, Fan C. 2008. Aptamer-based biosensors. Trends Anal. Chem. 27: 108-117. https://doi.org/10.1016/j.trac.2007.12.004

Cited by

  1. Systemic bioinformatics analysis of skeletal muscle gene expression profiles of sepsis vol.15, pp.6, 2017, https://doi.org/10.3892/etm.2018.6026
  2. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications vol.21, pp.14, 2020, https://doi.org/10.3390/ijms21145074
  3. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections vol.4, pp.5, 2017, https://doi.org/10.1021/acsabm.0c01358