DOI QR코드

DOI QR Code

Detection and Quantification of Toxin-Producing Microcystis aeruginosa Strain in Water by NanoGene Assay

  • Lee, Eun-Hee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Son, Ahjeong (Department of Environmental Science and Engineering, Ewha Womans University)
  • Received : 2016.11.08
  • Accepted : 2017.01.24
  • Published : 2017.04.28

Abstract

We demonstrated the quantitative detection of a toxin-producing Microcystis aeruginosa (M. aeruginosa) strain with the laboratory protocol of the NanoGene assay. The NanoGene assay was selected because its laboratory protocol is in the process of being transplanted into a portable system. The mcyD gene of M. aeruginosa was targeted and, as expected, its corresponding fluorescence signal was linearly proportional to the mcyD gene copy number. The sensitivity of the NanoGene assay for this purpose was validated using both dsDNA mcyD gene amplicons and genomic DNAs (gDNA). The limit of detection was determined to be 38 mcyD gene copies per reaction and 9 algal cells/ml water. The specificity of the assay was also demonstrated by the addition of gDNA extracted from environmental algae into the hybridization reaction. Detection of M. aeruginosa was performed in the environmental samples with environmentally relevant sensitivity (${\sim}10^5$ algal cells/ml) and specificity. As expected, M. aeruginosa were not detected in nonspecific environmental algal gDNA over the range of $2{\times}10^0$ to $2{\times}10^7$ algal cells/ml.

Keywords

References

  1. Esposito A. 2016. Chile's salmon farms losing up to $800 million from algal bloom. Reuters, USA.
  2. Hallegraeff GM. 2010. On the global increase of harmful algal bloom. Wetl. Aust. J. 12: 2-15.
  3. Johns DG, Reid PC. 2001. An overview of plankton ecology in the North Sea, United States. Technical report produced for Strategic Environmental Assessment. SAHFOS, Plymouth, UK.
  4. Foster JM. 2013. Lake Erie is dying again, and warmer waters and wetter weather are to blame. Available at https://thinkprogress.org/lake-erie-is-dying-again-and-warmer-waters-and-wetter-weather-are-to-blame-96956c15f046#.6pe6d0i0c.
  5. Kotak BG, Zurawell RW, Prepas EE, Holmes CF. 1996. Microcystin-LR concentration in aquatic food web compartments from lakes of varying trophic status. Can. J. Fish. Aquat. Sci. 53: 1974-1985. https://doi.org/10.1139/cjfas-53-9-1974
  6. Xue Q, Su X, Steinman AD, Cai Y, Zhao Y, Xie L. 2016. Accumulation of microcystins in a dominant chironomid larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake, Lake Taihu. Sci. Rep. 6: 31097. https://doi.org/10.1038/srep31097
  7. Campos A, Vasconcelos V. 2010. Molecular mechanisms of microcystin toxicity in animal cells. Int. J. Mol. Sci. 11: 268-287. https://doi.org/10.3390/ijms11010268
  8. Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CEM, et al. 1998. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338: 873-878. https://doi.org/10.1056/NEJM199803263381304
  9. Sivonen K, Jones G. 1999. Cyanobacterial toxins, pp. 41-111. In Chorus I, Bartram J (eds.). Toxin Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. E & FN Spon, London, UK, for World Health Organization, Routledge.
  10. Fleming LE, Rivero C, Burns J, Williams C, Bean JA, Shea KA, Stinn J. 2002. Blue green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae 1: 157-168. https://doi.org/10.1016/S1568-9883(02)00026-4
  11. Paerl H. 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum, pp. 217-237. In Hudnell HK (ed.). Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Springer, New York. USA.
  12. Dittmann E, Fewer DP, Neilan BA. 2013. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37: 23-43. https://doi.org/10.1111/j.1574-6976.2012.12000.x
  13. Rinta-Kanto JM, Ouellette AJ, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW. 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39: 4198-4205. https://doi.org/10.1021/es048249u
  14. Vaitomaa J, Rantala A, Halinen K, Rouhiainen L, Tallberg P, Mokelke L, Sivonen K. 2003. Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl. Environ. Microbiol. 69: 7289-7297. https://doi.org/10.1128/AEM.69.12.7289-7297.2003
  15. Furukawa K, Noda N, Tsuneda S, Saito T, Itayama T, Inamori Y. 2006. Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase A gene. J. Biosci. Bioeng. 102: 90-96. https://doi.org/10.1263/jbb.102.90
  16. Johnson BN, Mutharasan R. 2013. A cantilever biosensor-based assay for toxin-producing cyanobacteria Microcystis aeruginosa using 16S rRNA. Environ. Sci. Technol. 47: 12333-12341. https://doi.org/10.1021/es402925k
  17. Rudi K, Skulberg OM, Larsen F, Jakobsen KS. 1998. Quantification of toxic cyanobacteria in water by use of competitive PCR followed by sequence-specific labeling of oligonucleotide probes. Appl. Environ. Microbiol. 64: 2639-2643.
  18. Sipari H, Rantala-Ylinen A, Jokela J, Oksanen I, Sivonen K. 2010. Development of a chip assay and quantitative PCR for detecting microcystin synthetase E gene expression. Appl. Environ. Microbiol. 76: 3797-3805. https://doi.org/10.1128/AEM.00452-10
  19. Lee E-H, Lim H J, Son A , Chua B. 2015. A disposable bacterial lysis cartridge (BLC) suitable for an in situ water-borne pathogen detection system. Analyst 140: 7776-7783. https://doi.org/10.1039/C5AN01317H
  20. Lee E-H, Chua B, Son A. 2015. Micro corona discharge based cell lysis method suitable for inhibitor resistant bacterial sensing systems. Sensor. Actuat. B Chem. 216: 17-23. https://doi.org/10.1016/j.snb.2015.04.030
  21. Mitchell KA, Chua B, Son A. 2014. Development of first generation in-situ pathogen detection system (Gen1-IPDS) based on NanoGene assay for near real time E. coli O157:H7 detection. Biosens. Bioelectron. 54: 229-236. https://doi.org/10.1016/j.bios.2013.10.056
  22. Kim GY, Wang XF, Ahn H, Son A. 2011. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids. Environ. Sci. Technol. 45: 8873-8880. https://doi.org/10.1021/es2013402
  23. Wang XF, Liles MR, Son A. 2013. Quantification of Escherichia coli O157:H7 in soils using an inhibitor-resistant NanoGene assay. Soil Biol. Biochem. 58: 9-15. https://doi.org/10.1016/j.soilbio.2012.11.016
  24. Kim GY, Son A. 2010. Development and characterization of a magnetic bead-quantum dot nanoparticles based assay capable of Escherichia coli O157:H7 quantification. Anal. Chim. Acta 677: 90-96. https://doi.org/10.1016/j.aca.2010.07.046
  25. Ouellette AJA, Wilhelm SW. 2003. Toxic cyanobacteria: the evolving molecular toolbox. Front. Ecol. Environ. 1: 359-366. https://doi.org/10.1890/1540-9295(2003)001[0359:TCTEMT]2.0.CO;2
  26. Kaebernick M, Neilan BA, Borner T, Dittmann E. 2000. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl. Environ. Microbiol. 66: 3387-3392. https://doi.org/10.1128/AEM.66.8.3387-3392.2000
  27. Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415. https://doi.org/10.1093/nar/gkg595
  28. Joung SH, Oh HM, Ko SR, Ahn CY. 2011. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae 10: 188-193. https://doi.org/10.1016/j.hal.2010.09.005
  29. UTEX. 2016. Medium instructions of the UTEX Culture Collection of Algae, University of Texas at Austin.
  30. Wang X, Son A. 2013. Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization. Environ. Sci. Process. Impacts 15: 2204-2212. https://doi.org/10.1039/c3em00457k
  31. Padovan A. 1992. Isolation and culture of five species of freshwater algae from the alligator rivers region, Northern territory. Technical Memorandum 37. Australian Government Publishing Services, Canberra. Australia.
  32. Steel AB, Levicky RL, Herne TM, Tarlov MJ. 2000. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys. J. 79: 975-981. https://doi.org/10.1016/S0006-3495(00)76351-X
  33. Lim SH, Bestvater F, Buchy P, Mardy S, Yu ADC. 2009. Quantitative analysis of nucleic acid hybridization on magnetic particles and quantum dot-based probes. Sensors (Basel) 9: 5590-5599. https://doi.org/10.3390/s90705590
  34. Armbruster DA, Pry T. 2008. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29: S49-S52.
  35. Blahova L, Babica P, Adamovsky O, Kohoutek J, Marsalek B, Blaha L. 2008. Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environ. Chem. Lett. 6: 223-227. https://doi.org/10.1007/s10311-007-0126-x
  36. Committee AM. 1987. Recommendations for the definition, estimation and use of the detection limit. Analyst 112: 199-204. https://doi.org/10.1039/an9871200199
  37. Shrivastava A, Gupta VB. 2011. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2: 21-25. https://doi.org/10.4103/2229-5186.79345
  38. Foulds IV, Granacki A, Xiao C, Krull UJ, Castle A, Horgen PA. 2002. Quantification of microcystin-producing cyanobacteria and E. coli in water by 5'-nuclease PCR. J. Appl. Microbiol. 93: 825-834. https://doi.org/10.1046/j.1365-2672.2002.01772.x
  39. Kim GY, Wang XF, Son A. 2011. Inhibitor resistance and in situ capability of nanoparticle based gene quantification. J. Environ. Monitor. 13: 1344-1350. https://doi.org/10.1039/c0em00566e
  40. Wang X, Lim HJ, Son A. 2014. Characterization of denaturation and renaturation of DNA for DNA hybridization. Environ. Health Toxicol. 29: e2014007. https://doi.org/10.5620/eht.2014.29.e2014007
  41. Oberholster P, Botha A, Grobbelaar J. 2004. Microcystis aeruginosa: source of toxic microcystins in drinking water. Afr. J. Biotechnol. 3: 159-168.
  42. Oh HM, Lee SJ, Jang MH, Yoon BD. 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl. Environ. Microbiol. 66: 176-179. https://doi.org/10.1128/AEM.66.1.176-179.2000
  43. Long BM, Jones GJ, Orr PT. 2001. Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl. Environ. Microbiol. 67: 278-283. https://doi.org/10.1128/AEM.67.1.278-283.2001

Cited by

  1. Detection of Cyanobacteria in Eutrophic Water Using a Portable Electrocoagulator and NanoGene Assay vol.52, pp.3, 2017, https://doi.org/10.1021/acs.est.7b05055
  2. The Implications of Fragmented Genomic DNA Size Range on the Hybridization Efficiency in NanoGene Assay vol.18, pp.8, 2017, https://doi.org/10.3390/s18082646
  3. A Study of Seven Unrecorded Species of Benthic and Subaerophytic Cyanobacteria (Cyanophyceae, Cyanophyta) in Korea vol.36, pp.3, 2018, https://doi.org/10.11626/kjeb.2018.36.3.291
  4. A Study of Nine Unrecorded Species of Planktonic Cyanobacteria (Cyanophyceae, Cyanophyta) in Korea vol.36, pp.3, 2017, https://doi.org/10.11626/kjeb.2018.36.3.299
  5. State of knowledge on early warning tools for cyanobacteria detection vol.133, pp.None, 2017, https://doi.org/10.1016/j.ecolind.2021.108442