References
- Esposito A. 2016. Chile's salmon farms losing up to $800 million from algal bloom. Reuters, USA.
- Hallegraeff GM. 2010. On the global increase of harmful algal bloom. Wetl. Aust. J. 12: 2-15.
- Johns DG, Reid PC. 2001. An overview of plankton ecology in the North Sea, United States. Technical report produced for Strategic Environmental Assessment. SAHFOS, Plymouth, UK.
- Foster JM. 2013. Lake Erie is dying again, and warmer waters and wetter weather are to blame. Available at https://thinkprogress.org/lake-erie-is-dying-again-and-warmer-waters-and-wetter-weather-are-to-blame-96956c15f046#.6pe6d0i0c.
- Kotak BG, Zurawell RW, Prepas EE, Holmes CF. 1996. Microcystin-LR concentration in aquatic food web compartments from lakes of varying trophic status. Can. J. Fish. Aquat. Sci. 53: 1974-1985. https://doi.org/10.1139/cjfas-53-9-1974
- Xue Q, Su X, Steinman AD, Cai Y, Zhao Y, Xie L. 2016. Accumulation of microcystins in a dominant chironomid larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake, Lake Taihu. Sci. Rep. 6: 31097. https://doi.org/10.1038/srep31097
- Campos A, Vasconcelos V. 2010. Molecular mechanisms of microcystin toxicity in animal cells. Int. J. Mol. Sci. 11: 268-287. https://doi.org/10.3390/ijms11010268
- Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CEM, et al. 1998. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N. Engl. J. Med. 338: 873-878. https://doi.org/10.1056/NEJM199803263381304
- Sivonen K, Jones G. 1999. Cyanobacterial toxins, pp. 41-111. In Chorus I, Bartram J (eds.). Toxin Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. E & FN Spon, London, UK, for World Health Organization, Routledge.
- Fleming LE, Rivero C, Burns J, Williams C, Bean JA, Shea KA, Stinn J. 2002. Blue green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae 1: 157-168. https://doi.org/10.1016/S1568-9883(02)00026-4
- Paerl H. 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum, pp. 217-237. In Hudnell HK (ed.). Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Springer, New York. USA.
- Dittmann E, Fewer DP, Neilan BA. 2013. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev. 37: 23-43. https://doi.org/10.1111/j.1574-6976.2012.12000.x
- Rinta-Kanto JM, Ouellette AJ, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW. 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39: 4198-4205. https://doi.org/10.1021/es048249u
- Vaitomaa J, Rantala A, Halinen K, Rouhiainen L, Tallberg P, Mokelke L, Sivonen K. 2003. Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl. Environ. Microbiol. 69: 7289-7297. https://doi.org/10.1128/AEM.69.12.7289-7297.2003
- Furukawa K, Noda N, Tsuneda S, Saito T, Itayama T, Inamori Y. 2006. Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase A gene. J. Biosci. Bioeng. 102: 90-96. https://doi.org/10.1263/jbb.102.90
- Johnson BN, Mutharasan R. 2013. A cantilever biosensor-based assay for toxin-producing cyanobacteria Microcystis aeruginosa using 16S rRNA. Environ. Sci. Technol. 47: 12333-12341. https://doi.org/10.1021/es402925k
- Rudi K, Skulberg OM, Larsen F, Jakobsen KS. 1998. Quantification of toxic cyanobacteria in water by use of competitive PCR followed by sequence-specific labeling of oligonucleotide probes. Appl. Environ. Microbiol. 64: 2639-2643.
- Sipari H, Rantala-Ylinen A, Jokela J, Oksanen I, Sivonen K. 2010. Development of a chip assay and quantitative PCR for detecting microcystin synthetase E gene expression. Appl. Environ. Microbiol. 76: 3797-3805. https://doi.org/10.1128/AEM.00452-10
- Lee E-H, Lim H J, Son A , Chua B. 2015. A disposable bacterial lysis cartridge (BLC) suitable for an in situ water-borne pathogen detection system. Analyst 140: 7776-7783. https://doi.org/10.1039/C5AN01317H
- Lee E-H, Chua B, Son A. 2015. Micro corona discharge based cell lysis method suitable for inhibitor resistant bacterial sensing systems. Sensor. Actuat. B Chem. 216: 17-23. https://doi.org/10.1016/j.snb.2015.04.030
- Mitchell KA, Chua B, Son A. 2014. Development of first generation in-situ pathogen detection system (Gen1-IPDS) based on NanoGene assay for near real time E. coli O157:H7 detection. Biosens. Bioelectron. 54: 229-236. https://doi.org/10.1016/j.bios.2013.10.056
- Kim GY, Wang XF, Ahn H, Son A. 2011. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids. Environ. Sci. Technol. 45: 8873-8880. https://doi.org/10.1021/es2013402
- Wang XF, Liles MR, Son A. 2013. Quantification of Escherichia coli O157:H7 in soils using an inhibitor-resistant NanoGene assay. Soil Biol. Biochem. 58: 9-15. https://doi.org/10.1016/j.soilbio.2012.11.016
- Kim GY, Son A. 2010. Development and characterization of a magnetic bead-quantum dot nanoparticles based assay capable of Escherichia coli O157:H7 quantification. Anal. Chim. Acta 677: 90-96. https://doi.org/10.1016/j.aca.2010.07.046
- Ouellette AJA, Wilhelm SW. 2003. Toxic cyanobacteria: the evolving molecular toolbox. Front. Ecol. Environ. 1: 359-366. https://doi.org/10.1890/1540-9295(2003)001[0359:TCTEMT]2.0.CO;2
- Kaebernick M, Neilan BA, Borner T, Dittmann E. 2000. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl. Environ. Microbiol. 66: 3387-3392. https://doi.org/10.1128/AEM.66.8.3387-3392.2000
- Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415. https://doi.org/10.1093/nar/gkg595
- Joung SH, Oh HM, Ko SR, Ahn CY. 2011. Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae 10: 188-193. https://doi.org/10.1016/j.hal.2010.09.005
- UTEX. 2016. Medium instructions of the UTEX Culture Collection of Algae, University of Texas at Austin.
- Wang X, Son A. 2013. Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization. Environ. Sci. Process. Impacts 15: 2204-2212. https://doi.org/10.1039/c3em00457k
- Padovan A. 1992. Isolation and culture of five species of freshwater algae from the alligator rivers region, Northern territory. Technical Memorandum 37. Australian Government Publishing Services, Canberra. Australia.
- Steel AB, Levicky RL, Herne TM, Tarlov MJ. 2000. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys. J. 79: 975-981. https://doi.org/10.1016/S0006-3495(00)76351-X
- Lim SH, Bestvater F, Buchy P, Mardy S, Yu ADC. 2009. Quantitative analysis of nucleic acid hybridization on magnetic particles and quantum dot-based probes. Sensors (Basel) 9: 5590-5599. https://doi.org/10.3390/s90705590
- Armbruster DA, Pry T. 2008. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29: S49-S52.
- Blahova L, Babica P, Adamovsky O, Kohoutek J, Marsalek B, Blaha L. 2008. Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environ. Chem. Lett. 6: 223-227. https://doi.org/10.1007/s10311-007-0126-x
- Committee AM. 1987. Recommendations for the definition, estimation and use of the detection limit. Analyst 112: 199-204. https://doi.org/10.1039/an9871200199
- Shrivastava A, Gupta VB. 2011. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2: 21-25. https://doi.org/10.4103/2229-5186.79345
- Foulds IV, Granacki A, Xiao C, Krull UJ, Castle A, Horgen PA. 2002. Quantification of microcystin-producing cyanobacteria and E. coli in water by 5'-nuclease PCR. J. Appl. Microbiol. 93: 825-834. https://doi.org/10.1046/j.1365-2672.2002.01772.x
- Kim GY, Wang XF, Son A. 2011. Inhibitor resistance and in situ capability of nanoparticle based gene quantification. J. Environ. Monitor. 13: 1344-1350. https://doi.org/10.1039/c0em00566e
- Wang X, Lim HJ, Son A. 2014. Characterization of denaturation and renaturation of DNA for DNA hybridization. Environ. Health Toxicol. 29: e2014007. https://doi.org/10.5620/eht.2014.29.e2014007
- Oberholster P, Botha A, Grobbelaar J. 2004. Microcystis aeruginosa: source of toxic microcystins in drinking water. Afr. J. Biotechnol. 3: 159-168.
- Oh HM, Lee SJ, Jang MH, Yoon BD. 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl. Environ. Microbiol. 66: 176-179. https://doi.org/10.1128/AEM.66.1.176-179.2000
- Long BM, Jones GJ, Orr PT. 2001. Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl. Environ. Microbiol. 67: 278-283. https://doi.org/10.1128/AEM.67.1.278-283.2001
Cited by
- Detection of Cyanobacteria in Eutrophic Water Using a Portable Electrocoagulator and NanoGene Assay vol.52, pp.3, 2017, https://doi.org/10.1021/acs.est.7b05055
- The Implications of Fragmented Genomic DNA Size Range on the Hybridization Efficiency in NanoGene Assay vol.18, pp.8, 2017, https://doi.org/10.3390/s18082646
- A Study of Seven Unrecorded Species of Benthic and Subaerophytic Cyanobacteria (Cyanophyceae, Cyanophyta) in Korea vol.36, pp.3, 2018, https://doi.org/10.11626/kjeb.2018.36.3.291
- A Study of Nine Unrecorded Species of Planktonic Cyanobacteria (Cyanophyceae, Cyanophyta) in Korea vol.36, pp.3, 2017, https://doi.org/10.11626/kjeb.2018.36.3.299
- State of knowledge on early warning tools for cyanobacteria detection vol.133, pp.None, 2017, https://doi.org/10.1016/j.ecolind.2021.108442