DOI QR코드

DOI QR Code

화학기상침착법에 의한 SiCf/SiC 복합체의 제조

Fabrication of SiCf/SiC Composite by Chemical Vapor Infiltration

  • Park, Ji Yeon (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Daejong (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Weon-Ju (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
  • 투고 : 2017.03.28
  • 심사 : 2017.04.27
  • 발행 : 2017.04.30

초록

$SiC_f/SiC$ 복합체를 제조하는 공정들 중에서 화학기상 침착(Chemical Vapor Infiltration) 공정은 저온에서 실형상이나 복잡한 형상을 제조할 수 있고, 기지상의 미세구조를 제어할 수 있으며, 고순도를 지닌 $SiC_f/SiC$ 복합체를 제조할 수 있는 효과적인 방법이다. 그러나 잔유 기공을 가지며 공정시간이 긴 단점이 있다. 기공률을 줄이고 효과적인 기지상 채움을 위하여 휘스커(whisker) 성장과 기지상 채움공정을 연속하여 수행하는 whisker growing assisted 화학기상침착공정이 개발되었다. 기지상 채움 전에 프리폼에 SiC 휘스커를 미리 성장시키면 섬유간이나 번들간에 존재하는 큰 기공을 작게 분할하여 기지상 채움 효율을 증진할 수 있다. 본 논문에서는 $SiC_f/SiC$ 복합체 제조를 위한 화학기상침착법공정의 기초와 일반적인 화학기상침착공정과 whisker growing assisted 화학기상침착공정으로 제조한 $SiC_f/SiC$ 복합체의 실험결과들을 간략히 서술하였다.

Among several fabrication processes of $SiC_f/SiC$ composites, the chemical vapor infiltration (CVI) process has attractive advantages in manufacturing complex net-or near-net-shape components at relatively low temperatures, easily controlling the microstructure of the matrix and obtaining the highest SiC purity level. However, it has disadvantages in that the ratio of residual pores in matrix is higher than other processes and processing time is relatively long. To reduce the residual porosity, the whisker-growing-assisted CVI process, which is composed of whisker growth and matrix filling steps has been developed. The whiskers grown before matrix filling may serve to divide the large natural pores between the fibers or bundles so that the matrix can be effectively filled into the finely divided pores. In this paper, the fundamentals of the CVI process for preparation of $SiC_f/SiC$ composites and some experimental results prepared by CVI and whisker-growing-assisted CVI processes are briefly introduced.

키워드

참고문헌

  1. Moeller, H.H., Long, W.G., Caputo, A.J., and Lowden, R.A., "Fiber-Reinforced Ceramic Composites", Ceramic Engineering & Science Proceedings, Vol. 8, No. 7-8, 1987, pp. 977-984.
  2. Freitag, D.W., and Richerson, D.W., Opportunities for Advanced Ceramics, to Meet the Needs of the Industries of the Future, DOE/ORO/2076, 1998.
  3. Curtin, W.A., "Stress-strain Behavior of Brittle Matrix Composite," in Comprehensive Composite Materials, Vol. 4 Carbon/Carbon, Cement and Ceramic Matrix Composites, Edited by Kelly, A. and Zweben, C., Ch. 4.03, Elsevier Science, Amsterdam, Netherlands, 2000.
  4. Park, J.Y., "$SiC_f$/SiC Composites as Core Materials for Generation IV Nuclear Reactors," in Structural Materials for Generation IV Nuclear Reactors, Edited by Yvon, P., pp. 441-470, Woodhead Publishing, UK, 2017.
  5. Spriet, P., "CMC Applications to Gas Turbine," in Ceramic Matrix Composites; Materials, Modeling and Technology, Edited by Bansal, N.P., and Lamon, J., pp. 593-608, John Wiley & Sons, Inc., New Jersey, USA, 2015.
  6. Ivekovic, A., Novak, S., Drazic, G., Blagoeva, D., and Gonzalez de Vicente, S., "Current Status and Prospects of $SiC_f$/SiC for Fusion Structural Applications," Journal of the European Ceramic Society, Vol. 33, 2013, pp. 1577-1589. https://doi.org/10.1016/j.jeurceramsoc.2013.02.013
  7. Naslain, R., "SiC-Matrix Composites: Nonbrittle Ceramics for Thermo-Structural Application," International Journal of Applied Ceramic Technology, Vol. 2, No. 2, 2005, pp. 75-84. https://doi.org/10.1111/j.1744-7402.2005.02009.x
  8. Katoh, Y., Ozawa, K., Shih, C., Nozawa, T., Shinavski, R.J., Hasegawa, A., and Snead, L.L., "Continuous SiC Fiber, CVI SiC Matrix Composites for Nuclear Applications: Properties and Irradiation Effects," Journal of Nuclear Materials, 448, 2014, pp. 448-476. https://doi.org/10.1016/j.jnucmat.2013.06.040
  9. "GE Makes $200M Investment in Silicon Carbide Manufacturing Factories," American Ceramic. Society Bulletin, Vol. 95, No. 1, 2016, pp. 12.
  10. www.geaviation.com_press_military_military_20150210.html.
  11. Park, J.Y. et al., Functional materials, KAERI/RR-2237/2001, 2002.
  12. Park, J.Y., Kim, W.J., Jung, C.H., Woo, C.H., and Ryu, W.S., Development of the Fabrication Process of SiC Composite by Radiation Beam, KAERI/RR-2631/2005, 2006.
  13. Katoh, Y., Dong, S.M., and Kohyama, A., "Thermo-mechanical Properties and Microstructure of Silicon Carbide Composites Fabricated by Nano-infiltrated Transient Eutectoid Process," Fusion Engineering and Design, Vol. 61-62, 2002, pp. 723-731. https://doi.org/10.1016/S0920-3796(02)00180-1
  14. Takeda, M., Kagawa, Y., Mitsuno, S., Imai, Y., and Ichikawa, H., "Strength of a Hi-NicalonTM/siliconcarbide-matrix Composite Fabricated by the Multiple Polymer Infiltration-pyrolysis Process," Journal of the American Ceramic Society, Vol. 82, No. 6, 1999, pp. 1579-81. https://doi.org/10.1111/j.1151-2916.1999.tb01960.x
  15. Kameda, T., Suyama, S., Itoh, Y., and Goto, Y., "Development of Continuous SiC Fiber-reinforced Reaction Sintered SiC Matrix Composite," Journal of Ceramic Society Japan, Vol. 107, No. 4, 1999, pp. 327-334. https://doi.org/10.2109/jcersj.107.327
  16. Besmann, T.M., Shelon, B.W., Lowden, R.A., and Stinton, D.P., "Vapor Phase Fabrication and Properties of Continuous-Filament Ceramic Composites," Science, Vol. 253, 1991, pp. 1104-1109. https://doi.org/10.1126/science.253.5024.1104
  17. Spear, K.E., "Principles and Applications of Chemical Vapor Deposition (CVD)," Pure and Applied Chemistry, Vol. 54, No. 7, 1982, pp. 1297-1311. https://doi.org/10.1351/pac198254071297
  18. Kingon, A.I., Lutz, L.J., Law, P., and Davis, R.F., "Thermodynamic Calculations for the Chemical Vapor Deposition of Silicon Carbide," Journal of the American Ceramic Society, Vol. 66, No. 8, 1973, pp. 558-566. https://doi.org/10.1111/j.1151-2916.1983.tb10091.x
  19. KIaus K. Schuegraf, Handbook of Thin Film Deposition Processes and Techniques: principles, Methods, Equipments and Applications, pp. 241, Noyes Publications, USA, 1988.
  20. Caputo, A.J., and Lackey, W.J., "Fabrication of Fiber-Reinforced Ceramic Composites by Chemical Vapor Infiltration", Ceramic Engineering and Science Proceedings, Vol. 5, No. 7-8, 1984, pp. 654-657. https://doi.org/10.1002/9780470320228.ch20
  21. Stinton, D.P., Caputo, A.J., and Lowden, R.A., "Synthesis of Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration," American Ceramic Society Bulletin, Vol. 65, No. 2, 1986, pp. 347-350.
  22. Bertrand, S., Lavaud, J.F., Hadi, R.E., Vifnoles, G., and Pailler, R. "The Thermal Gradient-Pulse Flow CVI Process : a New Chemical Vapor Infiltration Technique for the Densification of Fiber Preforms", Journal of the European Ceramic Society, Vol. 18, 1998, pp. 857-870. https://doi.org/10.1016/S0955-2219(97)00210-0
  23. Itoh, K., Imuta, M., Sakai, A., Gotoh, J., and Sugiyama, K., "Pulsed Chemical Vapor Infiltration of SiC to Three Dimensional Carbon Fibre Preforms", Journal of Material Science, Vol. 27, 1992, pp. 6022-6028. https://doi.org/10.1007/BF01133744
  24. Besmann, T.M., McKaughlin, J.C., and Lin, H., "Fabrication of Ceramic Composites : Forced CVI", Journal of Nuclear Materials, Vol. 219, 1995, pp. 31-35. https://doi.org/10.1016/0022-3115(94)00395-5
  25. Oh, B.J., Lee, Y.J., Choi, D.J., Hong, G.W., Park, J.Y., and Kim, W.J., "Fabrication of Carbon/Silicon Carbide Composites by Isothermal Chemical Vapor Infiltration, using the Situ Whiskering Growing and Matrix Filling Process," Journal of the American Ceramic Society, Vol. 84, No. 1, 2001, pp. 245-247. https://doi.org/10.1111/j.1151-2916.2001.tb00643.x
  26. Park, J.Y., Hwang, H.S., Kim, W.J., Kim, J.I., Son, J.H., Oh, B.J., and Choi, D.J., "Fabrication and Characterization of $SiC_f$/SiC Composite by CVI Using the Whiskering Process," Journal of Nuclear Materials, Vol. 307-311, 2002, pp. 1227-1231. https://doi.org/10.1016/S0022-3115(02)00958-3
  27. Park, J.Y., Kang, S.M., Kim, W.J., and Ryu, W.S., "Characterization of the $SiC_f$/SiC Composite Fabricated by the Whisker Growing Assisted CVI Process," Key Engineering Materials, Vol. 287, 2005, pp. 200-205. https://doi.org/10.4028/www.scientific.net/KEM.287.200
  28. Kim, W.J., Kang, S.M., Jung, C.H., Park, J.Y., and Ryu, W.-S., "Growth of SiC Nanowires Within Stacked SiC Fiber Fabrics by a Noncatalytic Chemical Vapor Infiltration Technique," Journal of Crystal Growth, Vol. 300, 2007, pp. 503-508. https://doi.org/10.1016/j.jcrysgro.2006.11.339
  29. Jing Zheng, Matthew J. Kramer and Mufit Akinc, "In situ Growth of SiC Whisker in Pyrolyzed Monolithic Mixture of AHPCS and SiC," Journal of the American Ceramic Society, 83, No. 12, 2000, pp. 2961-2966. https://doi.org/10.1111/j.1151-2916.2000.tb01667.x
  30. Hollar, Jr., W.E., and Kim, J.J., "Review of VLS SiC Whisker Growth Technology," Ceramic Engineering and Science Proceedings, Vol. 12, 1991, pp. 979-991.
  31. Urretavizcaya, G., and Porto Lopez, J.M., "Growth of SiC Whiskers Process", J. Materials Research, Vol. 9, 1994, pp. 2981-2986. https://doi.org/10.1557/JMR.1994.2981
  32. Park, J.Y., Kang, S.M., and Kim, W.J, Development of $SiC_f$/SiC Composite by CVI with Whisker, in High Temperature Ceramic Materials and Composites, Edited by Krenkel, W. and Lamon, J., pp. 85-91, Pub. by AVISO Verlagsgesellschaft mbH, D-10117 Berlin (Germany), 2010.