DOI QR코드

DOI QR Code

SiCf-SiC 복합재료의 내환경 코팅 및 열, 기계적 내구성 평가

Thermal and Mechanical Evaluation of Environmental Barrier Coatings for SiCf-SiC Composites

  • 투고 : 2017.03.30
  • 심사 : 2017.04.27
  • 발행 : 2017.04.30

초록

본 논문에서는 탄화규소 섬유강화 탄화규소 복합재료에 내환경 코팅을 수행한 후, 열 기계적 특성평가에 대한 연구를 수행하였다. 초기분말은 성형공정도중 흐름성을 좋게 하기 위해 분무건조법으로 구형의 분말을 제조하였다. 내환경 코팅재는 복합재료가 산화되거나 고온 수증기와 반응하는 것을 방지하기 위해 행하여 지는데, 본 연구에서는 액상침투법(LSI)으로 제조한 복합재에 실리콘으로 본드코팅을 하고 그 위에 대기플라즈마용사법으로 뮬라이트(mullite)와 무게비로 12% 이터븀 실리케이트(ytterbium silicate)가 혼합된 복합재를 코팅하였다. 대기플라즈마 코팅공정 시 성형변수로서 분무거리를 100, 120 그리고 140 mm로 변화시켰다. 그 후 $1100^{\circ}C$의 온도에서 100시간동안 유지하는 실험과 $1200^{\circ}C$의 온도에서 열충격을 가하는 싸이클을 3000회 반복하였다. 열내구성 시험동안 계면 박리는 일어나지 않았지만, 현저한 균열들이 코팅층 내에서 발견되었다. 균열밀도와 균열의 길이는 코팅도중의 분무거리에 의존하여 변화하였다. 열 내구성 시험 후, 압흔 시험을 통해 기계적 열화거동을 분석하였는데, 시험의 방식이나 조건들이 하중-변위 곡선의 거동에 영향을 주었다.

This study investigates thermal and mechanical characterization of environmental barrier coating on the $SiC_f-SiC$ composites. The spherical environmental barrier coating (EBC) powders are prepared using a spray drying process for flowing easily during coating process. The powders consisting of mullite and 12 wt% of Ytterbium silicate are air plasma sprayed on the Si bondcoat on the LSI SiC fiber reinforced SiC composite substrate for protecting the composites from oxidation and water vapor reaction. We vary the process parameter of spray distance during air plasma spray of powders, 100, 120 and 140 mm. After that, we performed the thermal durability tests by thermal annealing test at $1100^{\circ}C$ for 100hr and thermal shock test from $1200^{\circ}C$ for 3000 cycles. As a result, the interface delamination of EBC never occur during thermal durability tests while stable cracks are prominent on the coating layer. The crack density and crack length depend on the spray distance during coating. The post indentation test indicates thermal tests influence on the indentation load-displacement mechanical behavior.

키워드

참고문헌

  1. Bansal, P. N., Handbook of Ceramic Composites, Springer Science & Business Media, USA, 2006.
  2. Kowbela, W., Brucea, C.A., Tsoua, K.L., Patela, K., Withersa, J.C., and Youngbloodb, G.E., "High Thermal Conductivity SiC/SiC Composites for Fusion Applications", Journal of Nuclear Materials, Vol. 283-287, 2000, pp. 570-573. https://doi.org/10.1016/S0022-3115(00)00213-0
  3. Kowbel, W., Bruce, C.A., Tsou, K.L., Patel, K., Withers, J.C., and Youngblood, G.E., "High Thermal Conductivity SiC/SiC Composites for Fusion Applications", Journal of Nuclear Materials, Vol. 283-287, Part 1, 2000, pp. 570-573. https://doi.org/10.1016/S0022-3115(00)00213-0
  4. Yamada, R., Igawa, N., and Taguchi, T., "Thermal Diffusivity/Conductivity of Tyranno SA Fiber- and Hi-Nicalon Type S fiber-reinforced 3-D SiC/SiC Composites", Journal of Nuclear Materials, Vol. 329-333, 2004, pp. 497-501. https://doi.org/10.1016/j.jnucmat.2004.04.109
  5. Levine, S.R., Opila, E.J., Halbig, M.C., Kiser, J.D., Singh, M., and Salem, J.A., "Evaluation of Ultra-high Temperature Ceramics for Aero Propulsion Use", J. European Ceramic Society, Vol. 22, 2002, pp. 2757-2767. https://doi.org/10.1016/S0955-2219(02)00140-1
  6. Park, H.J., Kim, H.E., and Niihara, K., "Microstructure and High-temperature Strength of $Si_3N_4$-SiC Nanocomposite", Journal of the European Ceramic Society, Vol. 18, 1998, pp. 907-914. https://doi.org/10.1016/S0955-2219(97)00180-5
  7. Poortemana, M., Descampsa, P., Cambiera, F., Plisnierb, M., Canonneb, V., and Descampsb, J.C., "Silicon Nitride/silicon Carbide Nanocomposite Obtained by Nitridation of SiC: Fabrication and High Temperature Mechanical Properties", Journal of the European Ceramic Society, Vol. 23, 2003, pp. 2361-2366. https://doi.org/10.1016/S0955-2219(03)00088-8
  8. Ashby, M.F., and Jones, D.R.H., Engineering Materials 2: An Introduction to Microstructures and Processing, Butterworth-Heinemann, UK, 2012.
  9. Larochelle, K.J., and Morscher, G.N., "Tensile Stress Rupture Behavior of a Woven Ceramic Matrix Composite in Humid Environments at Intermediate Temperature Y Part I", Applied Composite Materials, Vol. 13, 2006, pp. 147-172. https://doi.org/10.1007/s10443-006-9009-8
  10. Shao, J., Li, W., Deng, Y., Ma, J., Zhang, X., Geng, P., Kou, H., Chen, L., and Wu, X., "Theoretical Models and Influencing Factor Analysis for the Temperature-dependent Tensile Strength of Ceramic Fibers and Their Unidirectional Composites", Composite Structures, Vol. 164, 2017, pp. 23-31. https://doi.org/10.1016/j.compstruct.2016.12.054
  11. Denga, Y., Li, W., Wangb, R., Shaoa, J., Genga, P., Koua, H., Zhanga, X., and Maa, J., "Temperature Dependent First Matrix Cracking Stress Model for the Unidirectional Fiber Reinforced Ceramic Composites", Journal of the European Ceramic Society, Vol. 37, 2017, pp. 1305-1310. https://doi.org/10.1016/j.jeurceramsoc.2016.12.003
  12. Robinson R., "SiC Recession Caused by $SiO_2$ scale Volatility under Combustion Conditions: I, Experimental Results and Empirical Model", Journal of the American Ceramic Society, 1999, pp. 1817-1825.
  13. Fang, X., Liu, F., Su, H., Liu, B., and Feng, X., "Ablation of C/SiC, C/SiC-$ZrO_2$ and C/SiC-$ZrB_2$ Composites in Dry Air and air Mixed with Water Vapor", Ceramics International, Vol. 40, 2014, pp. 2985-2991. https://doi.org/10.1016/j.ceramint.2013.10.009
  14. Xu, J., Sarin, V.K., Dixit, S., and Basu, S.N., "Stability of Interfaces in Hybrid EBC/TBC Coatings for Si-based Ceramics in Corrosive Environments", International Journal of Refractory Metals and Hard Materials, Vol. 49, 2015, pp. 339-349. https://doi.org/10.1016/j.ijrmhm.2014.08.013
  15. Lee, K.N., and Miller, R.A., "Development and Environmental Durability of Mullite and Mullite/YSZ Dual Layer Coatings for SiC and $Si_3N_4$ Ceramics", Surface and Coatings Technology, Vol. 86-87, 1996, pp. 142-148. https://doi.org/10.1016/S0257-8972(96)03074-5
  16. Ueno, S., Lin, H.T., and Ohji, T., "Corrosion and Recession Mechanism of $Lu_2Si_2O_7$/mullite Eutectic", J. European Ceramic Society, Vol. 28, 2008, pp. 2359-2361. https://doi.org/10.1016/j.jeurceramsoc.2008.01.008
  17. Lee, K.N., Fox, D.S., and Bansal, N.P., "Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and $Si_3N_4$ Ceramics", J. European Ceramic Society, Vol. 25, 2005, pp. 1705-1715. https://doi.org/10.1016/j.jeurceramsoc.2004.12.013
  18. Xu, Y., Hu, X., Xu, F., and Li, K., "Rare Earth Silicate Environmental Barrier Coatings: Present Status and Prospective", Ceramics International, Vol. 43, 2017, pp. 5847-5855. https://doi.org/10.1016/j.ceramint.2017.01.153
  19. Lee, K.H., and Byeon, U.S., "Current State and Application of Carbon Composites", Prospect of Industrial Chemistry, Vol. 17, 2014, pp. 40-47.
  20. Richards, B.T., Zhao, H., and Wadley, H.N.G., "Structure, Composition, and Defect Control During Plasma Spray Deposition of Ytterbium Silicate Coatings", Journal of Materials Science, Vol. 50, 2015, pp. 7939-7957. https://doi.org/10.1007/s10853-015-9358-5
  21. Richards, B.T., Zhu, D., Ghosn, L.G., and Wadley, H.N.G., "Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Systems: Preliminary Assessments", Developments in Strategic Ceramic Materials : Ceramic Engineering and Science Proceedings, Vol. 36, 2015, pp. 219-237.
  22. Kucuk, A., Berndt, C.C., Senturk, U., Lima R.S., and Lima, C.R.C., "Influence of Plasma Spray Parameters on Mechanical Properties of Yttria Stabilized Zirconia Coatings. I: Four Point Bend Test", Materials Science and Engineering: A, Vol. 284, 2000, pp. 29-40. https://doi.org/10.1016/S0921-5093(00)00799-1
  23. Franco, A., and Royer-Carfagni, G., "Contact Stresses in Adhesive Joints due to Differential Thermal Expansion with the Adherents", International Journal of Solids and Structures, Vol. 87, 2016, pp. 26-38. https://doi.org/10.1016/j.ijsolstr.2016.02.036
  24. Feng, F.J., Moon, H.S., Kwak, C.W., Park, J.Y., and Lee, K.S., "Fabrication and Characterization of Environmental Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying for Protection of Silicon Carbide Ceramics", Journal of the Korean Ceramic Society, Vol. 51, 2014, pp. 481-486. https://doi.org/10.4191/kcers.2014.51.5.481
  25. Ali, A.A., and Bhatt, R.T., "Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride-Modeled", Advanced Ceramic Coatings and Interfaces IV: Ceramic Engineering and Science Proceedings, Vol. 30, pp. 105-111.
  26. Oliver, W.C., and Pharr, G.M., "Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology", Journal of Materials Research, Vol. 19, 2004, pp. 3-20. https://doi.org/10.1557/jmr.2004.19.1.3
  27. Lee, K.S., "Initiation in Hard Ceramic Coating Layer", KSME International Journal, Vol. 17, 2003, pp. 1928-1937. https://doi.org/10.1007/BF02982432
  28. Hutchinson, J.W., and Suo, Z., "Mixed Mode Cracking in Layered Materials", Advances in Applied Mechanics, Vol. 29, 1992, pp. 63-191.
  29. Bermejo, R., and Danzer, R., "High Failure Resistance Layered Ceramics Using Crack Bifurcation and Interface Delamination as Reinforcement Mechanisms", Engineering Fracture Mechanics, Vol. 77, 2010, pp. 2126-2135. https://doi.org/10.1016/j.engfracmech.2010.02.020

피인용 문헌

  1. The Changes in Surface and Composition Ratio of Coating Films on Colored Spectacle Lenses by Thermal Stress vol.23, pp.2, 2018, https://doi.org/10.14479/jkoos.2018.23.2.73
  2. 하프늄카바이드 코팅을 통한 2종형상의 탄소/탄소복합재의 내삭마성 향상연구 vol.33, pp.4, 2017, https://doi.org/10.7234/composres.2020.33.4.205