DOI QR코드

DOI QR Code

Development of Microsatellite Markers for Discriminating Native Korean and Imported Cattle Breeds

한국 재래품종과 외래품종의 구별을 위한 초위성체 마커의 개발

  • Kim, Seungchang (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Cho, Chang-Yeon (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Roh, Hee-Jong (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Yeon, Seong-Heum (Animal Genetic Resources Station, National Institute of Animal Science, RDA) ;
  • Choi, Seong-Bok (Animal Genetic Resources Station, National Institute of Animal Science, RDA)
  • 김승창 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 조창연 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 노희종 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 연성흠 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 최성복 (농촌진흥청 국립축산과학원 가축유전자원센터)
  • Received : 2016.11.11
  • Accepted : 2017.03.27
  • Published : 2017.04.30

Abstract

Three Korean native cattle (KNC) and seven exotic breeds (Chikso, Hanwoo, Jeju black, Holstein, Japanese black, Charolais, Angus, Hereford, Simmental, and Cross breed) were characterized by using five microsatellite (MS) markers (INRA30, TGLA325, UMN0803, UMN0905, and UMN0929) from the sex chromosome. Genetic diversity was evaluated across the 10 breeds by using the number of alleles per locus, allele frequency, heterozygosity, and polymorphism information content (PIC) to search for locus and/or breed specific alleles, allowing a rapid and cost-effective identification of cattle samples, avoiding mislabeling of commercial beef. It was divided into two main groups from STRUCTURE analysis, one corresponding to KNC and the other to exotic cattle breeds. These results also showed specific genetic differences between KNC and exotic breeds. Nei's standard genetic distance was calculated and used in the construction of a neighbor-joining tree. Results evidenced a correspondence between genetic distance, breeds' history, and their geographic origin, and a clear separation between KNC and exotic breeds. Overall, this study evidenced that DNA markers can discriminate between domestic and imported beef, contributing to the knowledge on cattle breeds' genetic diversity and relationships by using MS markers of the sex chromosome. These markers would be useful for inhibitory effect about false sales and for building an effective tracking system.

성염색체에 위치하는 5 개의 초위성체 마커(INRA30, TGLA325, UMN0803, UMN0905, UMN0929) 를 이용하여 재래소 3품종과 외래소 7품종(칡소, 한우, 제주흑우, 홀스타인, 일본화우, 샤롤레, 앵거스, 헤어포드, 시멘탈, 한우X 샤롤레 교잡종)의 유전적 특징을 확인하였다. 상업적으로 판매되는 소고기의 잘못된 원산지 표기를 통해 부당한 경제적 이득을 취하고자 하는 문제를 해결하기 위한 방법으로 소고기 샘플을 빠르고 저비용으로 확인 하기 위한 방법으로 사용하기 위해 좌위 또는 품종 특이적 대립유전자를 탐색하고 좌위별 대립유전자수, 대립유전자빈도, 이형접합도 그리고 다형정보량(PIC)을 구하여 이들 10품종의 유전적 다양성을 평가하였다. STRUCTURE 분석을 통한 군락의 분류 및 유전적 균일성 분석에서 재래소 품종과 외래소 품종으로 두개의 주요 그룹으로 나뉘어진다. 이러한 결과들은 재래소와 외래소 품종의 특이적인 유전적 차이를 나타낸다. 또한 Nei's 표준 유전적 거리로 나타난 neighbor-joining tree에서도 독립적인 계통유전학적인 위치를 보여주었다. 이러한 결과는 국내 재래종과 외래품종 사이의 유전적 거리, 품종의 역사 및 그들의 지리적 기원 사이에 명백한 차이를 나타내는 증거로 사료된다. 이러한 결과들로 이들 성염색체의 초위성체 마커들에 의해 소 품종들의 유전적 다양성과 연관성은 과학적인 기초자료로 활용되고 재래소와 외래품종 소고기를 구별할 수 있는 DNA 마커들로 이용될 수 있을 것으로 사료된다. 그러므로 이러한 마커들은 효율적인 이력추적 시스템을 만드는데 사용되어 원산지 표시 위반을 억제하는데 유용할 것이다.

Keywords

References

  1. Arana, A., Soret, B., Lasa, I. and Alfonso, L. 2002. Meat traceability using DNA markers: application to the beef industry. Meat Sci. 61, 367-373. https://doi.org/10.1016/S0309-1740(01)00206-6
  2. Botstein, D., White, R. L., Skolnick, M. and Davis, R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314-331.
  3. Cameron, N. D., van Eijk, M. J., Brugmans, B. and Peleman, J. 2003. Discrimination between selected lines of pigs using AFLP markers. Heredity (Edinb). 91, 494-501. https://doi.org/10.1038/sj.hdy.6800314
  4. Choi, T. J., Lee, S. S., Yoon, D. H., Kang, H. S., Kim, C. D., Hwang, I. H., Kim, C. Y., Jin, X., Yang, C. G. and Seo, K. S. 2012. Determination of genetic diversity among Korean Hanwoo Cattle based on physical characteristics. Asian-Aust. J. Anim. Sci. 25, 1205-1215. https://doi.org/10.5713/ajas.2012.12124
  5. Cymbron, T., Freeman, A. R., Isabel Malheiro, M., Vigne, J. D. and Bradley, D. G. 2005. Microsatellite diversity suggests different histories for Mediterranean and Northern European cattle populations. Proc. Biol. Sci. 272, 1837-1843. https://doi.org/10.1098/rspb.2005.3138
  6. Dadi, H., Tibbo, M., Takahashi, Y., Nomura, K., Hanada, H. and Amano, T. 2008. Microsatellite analysis reveals high genetic diversity but low genetic structure in Ethiopian indigenous cattle populations. Anim. Genet. 39, 425-431. https://doi.org/10.1111/j.1365-2052.2008.01748.x
  7. Dieringer, D. and Schlotterer, C. 2003. microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167-169. https://doi.org/10.1046/j.1471-8286.2003.00351.x
  8. Earl, D. and vonHoldt, B. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet. Resour. 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7
  9. Egito, A. A., Paiva, S. R., Albuquerque Mdo, S., Mariante, A. S., Almeida, L. D., Castro, S. R. and Grattapaglia, D. 2007. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil. BMC Genet. 8, 83.
  10. Evanno, G., Regnaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  11. Fajardo, V., Gonzalez, I., Lopez-Calleja, I., Martin, I., Hernandez, P. E., Garcia, T. and Martin, R. 2006. PCR-RFLP authentication of meats from red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), cattle (Bos taurus), sheep (Ovis aries), and goat (Capra hircus). J. Agric. Food Chem. 54, 1144-1150. https://doi.org/10.1021/jf051766r
  12. Groeneveld, L. F., Lenstra, J. A., Eding, H., Toro, M. A., Scherf, B., Pilling, D., Negrini, R., Finlay, E. K., Jianlin, H. and Groeneveld, E. et al 2010. Genetic diversity in farm animals-- a review. Anim. Genet. 41, 6-31. https://doi.org/10.1111/j.1365-2052.2010.02038.x
  13. Jakobsson, M. and Rosenberg, N. A. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801-1806. https://doi.org/10.1093/bioinformatics/btm233
  14. Kalinowski, S. T., Taper, M. L. and Marshall, T. C. 2010. Corrigendum. Mol. Ecol. 19, 1512-1512. https://doi.org/10.1111/j.1365-294X.2010.04544.x
  15. Kim, J. B. and Lee, C. 2000. Historical look at the genetic improvement in Korean Cattle-Review. Asian-Aust. J. Anim. Sci. 13, 1467-1481. https://doi.org/10.5713/ajas.2000.1467
  16. Kim, J. H., Byun, M. J., Kim, M. J., Suh, S. W., Kim, Y. S., Ko, Y. G., Kim, S. W., Jung, K. S., Kim, D. H. and Choi, S. B. 2013. Phylogenetic analysis of Korean Black Cattle based on the mitochondrial cytochrome b gene. J. Life Sci. 23, 24-30. https://doi.org/10.5352/JLS.2013.23.1.24
  17. Kim, S. W., Jang, H. K., Kim, K. S., Kim, J. J., Jeon, J. T., Yoon, D. H., Kang, S. H., Jung, I. H. and Cheong, I. C. 2009. Establishment of genetic characteristics and individual identificaiton system using microsatellite loci in domestic beef cattle. J. Anim. Sci. Technol. 51, 273-282. https://doi.org/10.5187/JAST.2009.51.4.273
  18. Lee, S. K., Lee, Y. S., Park, S., Kim, H., Choi, S. Y., Yeon., L. J., Kim, K. B., Park, J. W., choi, J. W. and Lee, H. K. et al 2013. Effect of g.7516G>C SNP in FABP4 gene with carcass traits in Korean Brindle Cattle and Black Cattle. Ann. Anim. Resour. Sci. 24, 16-22. https://doi.org/10.12718/AARS.2013.24.1.16
  19. MAF 2004. National Report on the State of Animal Genetic Resources. Seoul, Rep of Korea. ftp:// ftp.fao.org/docrep/fao/010/a1250e/annexes/CountryReports/Korean Republic.pdf, 20-21.
  20. Maudet, C., Luikart, G. and Taberlet, P. 2002. Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis. J. Anim. Sci. 80, 942-950. https://doi.org/10.2527/2002.804942x
  21. Nei, M., Tajima, F. and Tateno, Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153-170. https://doi.org/10.1007/BF02300753
  22. Ota, T. 1993. DISPAN: Genetic Distance and Phylogenetic Analysis.
  23. Park, D. D. E. 2000. Microsatellite Toolkit For MS Excel 97 or 2000.
  24. Perez, T., Albornoz, J. and Dominguez, A. 2002. Phylogeography of chamois (Rupicapra spp.) inferred from microsatellites. Mol. Phylogenet. Evol. 25, 524-534. https://doi.org/10.1016/S1055-7903(02)00296-8
  25. Pham, L. D., Do, D. N., Binh, N. T., Nam, L. Q., Van Ba, N., Thuy, T. T. T., Hoan, T. X., Cuong, V. C. and Kadarmideen, H. N. 2013. Assessment of genetic diversity and population structure of Vietnamese indigenous cattle populations by microsatellites. Livest. Sci. 155, 17-22. https://doi.org/10.1016/j.livsci.2013.04.006
  26. Pritchard, J. K., Stephens, M. and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959.
  27. Rosenberg, N. A. 2004. distruct: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137-138.
  28. Sohn, S. H., Lee, C. Y., Kim, D. H., Park, G. B., Lee, J. G., Shin, C. K., Chung, H. S., Kwack, S. C., Park, M. K. and Chun, M. S., et al. 2000. Chromosomal pattern and karyotype of the Korean native stripped cattle Chickso. J. Anim. Sci. Technol. 42, 1-8.
  29. Vicente, A. A., Carolino, M. I., Sousa, M. C., Ginja, C., Silva, F. S., Martinez, A. M., Vega-Pla, J. L., Carolino, N. and Gama, L. T. 2008. Genetic diversity in native and commercial breeds of pigs in Portugal assessed by microsatellites. J. Anim. Sci. 86, 2496-2507. https://doi.org/10.2527/jas.2007-0691
  30. Wiener, P., Burton, D. and Williams, J. L. 2004. Breed relationships and definition in British cattle: a genetic analysis. 93, 597-602. https://doi.org/10.1038/sj.hdy.6800566