DOI QR코드

DOI QR Code

Analysis of net radiative changes and correlation with albedo over Antarctica

남극에서의 위성기반 순복사 장기변화와 알베도 사이의 상관성 분석

  • Seo, Minji (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ;
  • Lee, Kyeong-sang (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ;
  • Choi, Sungwon (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ;
  • Lee, Darae (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ;
  • Kim, Honghee (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ;
  • Kwon, Chaeyoung (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ;
  • Jin, Donghyun (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ;
  • Lee, Eunkyung (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University) ;
  • Han, Kyung-Soo (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University)
  • 서민지 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 이경상 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 최성원 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 이다래 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 김홍희 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 권채영 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 진동현 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 이은경 (부경대학교 지구환경시스템과학부 공간정보시스템공학과) ;
  • 한경수 (부경대학교 지구환경시스템과학부 공간정보시스템공학과)
  • Received : 2017.03.06
  • Accepted : 2017.04.04
  • Published : 2017.04.30

Abstract

Antarctica isimportant area in order to understand climate change. In addition, this area is complex region where indicate warming and cooling trend according to previous studies. Therefore, it is necessary to understand the long-term variability of Antarctic energy budget. Net radiation, one of energy budget factor, is affected by albedo, and albedo cause negative radiative forcing. It is necessary to analyze a relationship between albedo and net radiation in order to analyze relationship between two factors in Antarctic climate changes and ice-albedo feedback. In thisstudy, we calculated net radiation using satellite data and performed an analysis of long-term variability of net radiation over Antarctica. In addition we analyzed correlation between albedo. As a results, net radiation indicates a negative value in land and positive value in ocean during study periods. As an annual changes, oceanic trend indicates an opposed to albedo. Time series pattern of net radiation is symmetrical with albedo. Correlation between the two factors indicate a negative correlation of -0.73 in the land and -0.32 in the ocean.

남극은 기후변화를 이해하는데 있어 중요한 지역 중 하나이며, 선행연구에 따르면 온난화뿐만 아니라 냉각화도 일어나는 복합적인 지역이다. 그렇기 때문에 남극 에너지 수지의 장기간 변화에 대한 파악이 필요하다. 에너지 수지 요소 중 하나인 순복사는 알베도의 영향을 받으며, 이때 알베도는 negative radiative forcing을 일으키는 요소로 작용한다. 남극의 기후 변화 및 얼음-알베도 피드백에서 두 요소 사이의 관계를 면밀하게 분석하기 위해서는 두 요소 사이의 상관관계를 분석할 필요가 있다. 본 연구에서는 위성 자료를 활용하여 남극에서의 순복사량을 계산하고, 장기간 변화를 분석하였다. 순복사는 연구기간 동안 내륙에서 음의 분포를 보였으며, 해양에서는 양의 분포를 보였다. 순복사의 연간 변화의 경우 해양에서 알베도와 반대되는 변화가 관측되었다. 시계열 패턴은 알베도와 순복사가 서로 대칭되어 나타났으며, 두 요소 사이의 상관관계는 남극 내륙에서 -0.73의 높은 음의 상관관계를 보였으며 해양에서는 -0.32의 음의 상관관계를 보였다.

Keywords

References

  1. Alves, M., and J. Soares, 2016. Diurnal Variation of Soil Heat Flux at an Antarctic Local Area during Warmer Months. Applied and Environmental Soil Science, 2016(2016): 9.
  2. Carmona, F., R. Rivas, and V. Caselles, 2015. Development of a general model to estimate the instantaneous, daily, and daytime net radiation with satellite data on clear-sky days, Remote Sensing of Environment, 171: 1-13. https://doi.org/10.1016/j.rse.2015.10.003
  3. Chapin, F.S., M. Sturm, M.C. Serreze, J.P. McFadden, J.R. Key, A.H. Lloyd, A.D. McGuire, T.S. Rupp, A.H. Lynch, J.P. Schimel, J. Beringer, W.L. Chapman, H.E. Epstein, E.S. Euskirchen, L.D. Hinzman, G. Jia, C.-L. Ping, K.D. Tape, C.D.C. Thompson, D.A. Walker, and J.M. Welker, 2005. Role of land-surface changes in Arctic summer warming, science, 310(5748): 657-660. https://doi.org/10.1126/science.1117368
  4. CM SAF, 2012, CM SAF Cloud, Albedo, Radiation dataset, AVHRR-based, Edition 1 (CLARA-A1) Surface Albedo Product User Manual. DOI: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V001. http://dx.doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V001
  5. Comiso, J.C., 2000. Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. Journal of climate, 13: 1674-1696. https://doi.org/10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2
  6. GEWEX https://gewex-srb.larc.nasa.gov/common/php/SRB_validation.php
  7. Federer, C.A., 1968. Spatial variation of net radiation, albedo and surface temperature of forests, Journal of Applied Meteorology, 7(5): 789-795. https://doi.org/10.1175/1520-0450(1968)007<0789:SVONRA>2.0.CO;2
  8. IPCC, 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC(Vol. 4). Cambridge University Press.
  9. IPCC, 2013. Observations: Cryosphere. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013, pp. 317-382.
  10. Jobson, H.E. 1982. Evaporation into the atmosphere: theory, history, and applications, Eos, Transactions American Geophysical Union, 63(51): 1223-1224. https://doi.org/10.1029/EO063i051p01223-04
  11. King, J., 2014. Climate science: A resolution of the Antarctic paradox, Nature, 505(7484): 491-492. https://doi.org/10.1038/505491a
  12. Laine, V., 2008. Antarctic ice sheet and sea ice regional albedo and temperature change, 1982-2000, from AVHRR Polar Pathfinder data, Remote Sensing of Environment, 112(3): 646-667. https://doi.org/10.1016/j.rse.2007.06.005
  13. Rignot, E., J.L. Bamber, M.R. Van Den Broeke, C. Davis, Y. Li, W.J. Van De Berg, and E. Van Meijgaard, 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling, Nature Geoscience, 1(2): 106-110. https://doi.org/10.1038/ngeo102
  14. Seo, M., H.C. Kim, M. Huh, J.M. Yeom, C.S. Lee, K.S. Lee, S. Choi, and K.S. Han, 2016. Long-Term Variability of Surface Albedo and Its Correlation with Climatic Variables over Antarctica. Remote Sensing, 8(12): 981. https://doi.org/10.3390/rs8120981
  15. Turner, J., S.R. Colwell, G.J. Marshall, T.A. Lachlan-Cope, A.M. Carleton, P.D. Jones, V. Lagun, P.A. Reid, and S. Iagovkina, 2005. Antarctic climate change during the last 50 years. International journal of Climatology, 25(3): 279-294. https://doi.org/10.1002/joc.1130
  16. Van Den Broeke, M., C. Reijmer, and R. Van De Wal, 2004. Surface radiation balance in Antarctica as measured with automatic weather stations, Journal of Geophysical Research: Atmospheres, 109(D9).
  17. Wang, D., S. Liang, T. He, and Q. Shi, 2015. Estimating clear-sky all-wave net radiation from combined visible and shortwave infrared (VSWIR) and thermal infrared (TIR) remote sensing data, Remote Sensing of Environment, 167: 31-39. https://doi.org/10.1016/j.rse.2015.03.022
  18. Wendler, G., B. Moore, B. Hartmann, M. Stuefer, and R. Flint, 2004. Effects of multiple reflection and albedo on the net radiation in the pack ice zones of Antarctica. Journal of Geophysical Research: Atmospheres, 109(D6).
  19. Yu, L., Q. Yang, M. Zhou, D.H. Lenschow, X. Wang, J. Zhao, S. Qizhen, T. Zhongzian, S. Hui, L. Zhang, 2017. The variability of surface radiation fluxes over landfast sea ice near Zhongshan station, east Antarctica during austral spring, International Journal of Digital Earth, 1-18.