DOI QR코드

DOI QR Code

A Study on Environmental research Trends by Information and Communications Technologies using Text-mining Technology

텍스트 마이닝 기법을 이용한 환경 분야의 ICT 활용 연구 동향 분석

  • Park, Boyoung (Korea Adaptation Center for Climate Change, Korea Environment Institute) ;
  • Oh, Kwan-Young (Center for Environmental Assessment Monitoring, Korea Environment Institute) ;
  • Lee, Jung-Ho (Division of Natural Resources Conservation, Korea Environment Institute) ;
  • Yoon, Jung-Ho (Korea Environmental Information Center, Korea Environment Institute) ;
  • Lee, Seung Kuk (Biospheric Sciences Laboratory, NASA's Goddard Space Flight Center) ;
  • Lee, Moung-Jin (Center for Environmental Assessment Monitoring, Korea Environment Institute)
  • 박보영 (한국환경정책평가연구원 국가기후변화적응센터) ;
  • 오관영 (한국환경정책평가연구원 환경평가모니터링센터) ;
  • 이정호 (한국환경정책평가연구원 국토자연연구실) ;
  • 윤정호 (한국환경정책평가연구원 국토환경정보센터) ;
  • 이승국 ;
  • 이명진 (한국환경정책평가연구원 환경평가모니터링센터)
  • Received : 2017.01.19
  • Accepted : 2017.04.17
  • Published : 2017.04.30

Abstract

Thisstudy quantitatively analyzed the research trendsin the use ofICT ofthe environmental field using the text mining technique. To that end, the study collected 359 papers published in the past two decades(1996-2015)from the National Digital Science Library (NDSL) using 38 environment-related keywords and 16 ICT-related keywords. It processed the natural languages of the environment and ICT fields in the papers and reorganized the classification system into the unit of corpus. It conducted the text mining analysis techniques of frequency analysis, keyword analysis and the association rule analysis of keywords, based on the above-mentioned keywords of the classification system. As a result, the frequency of the keywords of 'general environment' and 'climate' accounted for 77 % of the total proportion and the keywords of 'public convergence service' and 'industrial convergence service' in the ICT field took up approximately 30 % of the total proportion. According to the time series analysis, the researches using ICT in the environmental field rapidly increased over the past 5 years (2011-2015) and the number of such researches more than doubled compared to the past (1996-2010). Based on the environmental field with generated association rules among the keywords, it was identified that the keyword 'general environment' was using 16 ICT-based technologies and 'climate' was using 14 ICT-based technologies.

본 연구는 텍스트 마이닝 기법을 활용하여 환경 분야에서 ICT의 활용 연구동향을 정량적으로 분석하였다. 이를 위해 환경 분야 키워드 38개, ICT 관련 키워드 16개를 바탕으로 국가과학기술정보센터(NDSL)에서 최근 20년(1996년-2015년)의 논문 359편을 수집하였다. 해당 논문을 대상으로 환경 분야 및 ICT 관련 자연어를 처리하여 말뭉치(Corpus)단위로 분류체계를 재구성하였다. 전술된 분류체계의 키워드를 바탕으로 텍스트 마이닝 분석 기법인 빈도 분석, 키워드 분석, 키워드 간 연관규칙을 확인하였다. 그 결과 '환경 일반' 및 '기후' 분야의 키워드 출현 빈도가 전체의 77 %, ICT는 '공공융합서비스' 및 '산업융합서비스'가 약 30 %의 비율을 차지하였다. 시계열 분석을 통해 환경 분야에서의 ICT 활용 연구는 최근 5년(2011년-2015년)사이에 급증하여 과거(1996년-2010년)과 비교하여 약 2배 이상 관련 연구가 증가된 것으로 나타났다. 키워드 간 연관 규칙을 생성하여 환경 분야를 기준으로 나타내었을 때, '환경 일반'은 16개, '기후'는 '14'개의 ICT 기반 기술을 주로 활용하고 있는 것으로 확인하였다.

Keywords

References

  1. Assuncao, M.D., R.N. Calheiros, S. Bianchi, M. A.S. Netto, and R. Buyya, 2015, Big Data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 79: 3-15.
  2. Bae, K.Y., J.H. Park, J.S. Kim, and Y.S. Lee, 2013, Analysis of the abstracts of research articles in food releted to climate change using a textmining algorithm. Journal of the Korean Data & Information Science Society, 24(6): 1429-1437 (in Korean with English abstract). https://doi.org/10.7465/jkdi.2013.24.6.1429
  3. Bae, S.J., and C.G. Park, 2003, Research on the possibility of application of technical information analysis of text mining method. Journal of Korea Technology Innovation Society, 5: 75-88 (in Korean with English abstract).
  4. Berkhin, P., 2006, A survey of clustering data mining techniques, Grouping multidimensional data, Springer Berlin Heidelberg.
  5. Hyun, Y.J., J.S. Kim, J.W. Jeong, S.M. Yun, and M.S. Lee, 2015, Text mining on internet-news regarding climate change and food. Journal of the Korean Data & Information Science Society, 26(2): 419-427 (in Korean with English abstract). https://doi.org/10.7465/jkdi.2015.26.2.419
  6. Institute for Information & communications Technology Promotion(IITP), 2016, http://www.iitp.kr/main.it.
  7. Jun, S.H., 2015, A Big Data Preprocessing using Statistical Text Mining. Journal of Korean Institute of Intelligent Systems, 25(5): 470-476 (in Korean with English abstract). https://doi.org/10.5391/JKIIS.2015.25.5.470
  8. Kambatla, K., G. Kollias, V. Kumar, and A. Grama, 2014, Trends in big data analytics. Journal of Parallel and Distributed Computing, 74: 2561-2573. https://doi.org/10.1016/j.jpdc.2014.01.003
  9. Korea Forest Service, 2016, http://www.forest.go.kr.
  10. Korea Institute of Science and Technology Information(KISTI), 2000, Establish of the technology analysis system using online DB searching, Soeul, Ministry of Trade, Industry and Energy
  11. Lee, M.S., C.H. Lee, and J.H. Kim, 2014, Big Data Analysis on Demands for Environmental Policies, Seoul, Korea Environment Institute
  12. Ministry of Science, ICT and Future planning, 2014, Rules of Information and Communications.Broadcast R&D management, Sejong: Ministry of Science, ICT and Future planning
  13. National Digital Science Library(NDSL), 2016, http://www.ndsl.kr/index.do
  14. National Disaster Management Research Institute, 2016, http://www.ndmi.go.kr/index.jsp
  15. Park, C.R. and K.Y. Lee, 2014, A Disaster Management System Using Text Mining Based on Social Network Service. Journal of Information Technology and Management, 1(1): 47-48.
  16. Park, H.C., 2011, The proposition of attributably pure confidence in association rule mining. Journal of the Korean Data & Information Science Society, 22(2): 235-243 (in Korean with English abstract).
  17. Seol, S.S., 2002, The Advance of Technology Analysis. Journal of Korea Technology Innovation Society, 5(3): 260-276 (in Korean with English abstract).

Cited by

  1. Research Subject Trend Analysis on Educational Innovation with Utilizing ICT Focusing on Government Differences: with Network Text Analysis of the Last 18 Years vol.28, pp.4, 2018, https://doi.org/10.21024/pnuedi.28.4.201812.239
  2. 언어 네트워크를 이용한 야외지질답사 관련 연구 동향 분석: 최근 21년(2000~2020년)을 중심으로 vol.14, pp.2, 2017, https://doi.org/10.15523/jksese.2021.14.2.173