DOI QR코드

DOI QR Code

A Study on Finding Solutions of Jisuguimundo with Magic Number 87, 93, and 99 using Alternating Method

마법수가 87, 93, 99인 지수귀문도의 해를 구하는 방안에 관한 연구

  • Park, Kyo Sik (Dept. of Math. Edu., Gyeongin National Univ. of Edu.)
  • Received : 2017.01.02
  • Accepted : 2017.04.10
  • Published : 2017.04.30

Abstract

When looking for solutions of Jisuguimundo with magic number 88~92 and 94~98, alternating method is applied to each possible partitions of each magic number. But this method does not apply in case of finding solutions of Jisuguimundo with magic number 87, 93, and 99. In this study, it is shown that solutions of Jisuguimundo with magic number 87, 93, and 99 can be found by applying alternating method to two partitions. These two partitions are derived partitions obtained by each partitions of magic number 87, 93, and 99. If every number from 1 to 30 which satisfy every unit path of Jisuguimundo can be found in all components of these two derived partitions, that arrangement is just a solution of Jisuguimundo. The method suggested in this study is more developed one than the method which is applied to just one partition.

Keywords

References

  1. Choe Heemahn, Choi Sung-Soon, Moon Byung-Ro, A Hybrid Genetic Algorithm for the Hexagonal Tortoise Problem, Lecture Notes in Computer Science 2723 (2003), 850-861.
  2. Choi Seok-Jeong, GuSuRyak (translated by Jeong Hae-Nam, Huh Min), Kyo-Woo-Sa, 2006. 최석정, 구수략 - 조선시대 산학총서, 정해남, 허민 옮김, 교우사, 2006.
  3. Kim Dong Jin, Oh Yung Hwan, Properties and solution-finding algorithm of Jisuguimundo (Turtle-shape Diagram), Proceedings of Korea Information Science Society 16(1) (1989), 405-408. 김동진, 오영환, 지수귀문도의 특성 및 해를 구하는 알고리즘, 한국정보과학회 봄 학술발표회 논문집 16(1) (1989), 405-408.
  4. Kim Young Joon, http://www.cyberschool.co.kr/, 2012. 김영준.
  5. Kwon Gyunuk et al, A study on solutions of Jisuguimundo using the range of magic sums, Journal for History of Mathematics 27(2) (2014), 111-125. 권균욱 외, 합의 범위를 이용한 지수귀문도 해의 탐구, Journal for History of Mathematics 27(2) (2014), 111-125. https://doi.org/10.14477/jhm.2014.27.2.111
  6. Park Kyo Sik, A study of making Jisuguimundo as a problem solving task for elementary teachers, Journal of Elementary Mathematics Education in Korea 15(1) (2011a), 77-13. 박교식, 초등학생을 위한 문제해결 과제로서의 지수귀문도의 해결 방안 연구, 한국초등수학교육학회지 15(1) (2011a), 77-93.
  7. Park Kyo Sik, A study on finding solutions to generalized Jisuguimundo (hexagonal tortoise problem), Journal of the Korean School Mathematics Society 14(3) (2011b), 261-275. 박교식, 일반화된 지수귀문도의 해를 구하는 방법에 관한 연구, 한국학교수학회논문집 14(3) (2011b), 261-275.
  8. Park Kyo Sik, A study on finding topics for the application of storytelling method in mathematics education: centered on Jisuyongyukdo and Jisuguimundo, Journal of the Korean School Mathematics Society 15(1) (2012), 155-169. 박교식, 수학교육에서의 스토리텔링 방식 적용을 위한 소재 연구: 지수용육도와 지수귀문도를 중심으로, 한국학교수학회논문집 15(1) (2012), 155-169.
  9. Arseniy V. Povolotskiy, Shin Haisoo, RI Bob McKay, Hexagonal Tortoise Problem Solving using Constraint Programming, Journal of KIISE: Software and Applications 38(1) (2011), 27-40. 아르세니 포볼로츠스키, 신해수, 밥 맥케이, 제약 프로그래밍을 이용한지수귀문도 풀이, 정보과학회지논문지 : 소프트웨어 및 응용 제38권 제1호, 2011년 1월호, 27-40.

Cited by

  1. 지수귀문도를 만드는 근사적 방법 vol.31, pp.4, 2017, https://doi.org/10.14477/jhm.2018.31.4.183