DOI QR코드

DOI QR Code

CO2 sequestration and heavy metal stabilization by carbonation process in bottom ash samples from coal power plant

  • Ramakrishna., CH (Hanil Cement) ;
  • Thriveni., T (Hanil Cement) ;
  • Nam, Seong Young (Technical Center, HANIL CEMENT Co.Ltd) ;
  • kim, Chunsik (Technical Center, HANIL CEMENT Co.Ltd) ;
  • Ahn, Ji Whan (Mineral Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2017.11.20
  • Accepted : 2017.12.13
  • Published : 2017.12.31

Abstract

Coal-fired power plants supply roughly 50 percent of the nation's electricity but produce a disproportionate share of electric utility-related air pollution. Coal combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash and fly ash residues. These disposal coal ash residues are however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation process has been shown to have a potential for improving the chemical stability and leaching behavior of bottom ash residues. The aim of this work was to quantify the volume of $CO_2$ that could be sequestrated with a view to reducing greenhouse gas emissions and stabilize the contaminated heavy metals from bottom ash samples. In this study, we used PC boiler bottom ash, Kanvera reactor (KR) slag and calcined waste lime for measuring chemical analysis and heavy metals leaching tests were performed and also the formation of calcite resulting from accelerated carbonation process was investigated by thermo gravimetric and differential thermal analysis (TG/DTA).

Keywords

References

  1. M.C Han, D. Han and J.K. Shin, Use of bottom ash and stone dust to make lightweight aggregate. Construction and Building Materials, 99, 192-199 (2015). https://doi.org/10.1016/j.conbuildmat.2015.09.036
  2. S. Shahidan, S.S.M. Zuki and N. Jamaluddin, Damage grading system for severity assessment on concrete structure, Case Stud, Constr. Mater., 5, 79-86, (2016). https://doi.org/10.1016/j.cscm.2016.09.001
  3. C. Arenas, C. Leiva, L.F. Vilches and H. Cifuentes, Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers. Waste Management, 33(11), 2316-2321 (2013). https://doi.org/10.1016/j.wasman.2013.07.008
  4. Khan, S. A., Din, Z. U., Ihsanullah, Z. A., & Zubair, A. (2011). Levels of selected heavy metals in drinking water of Peshawar city. International Journal of Science and Nature, 2, 648-652.
  5. M. Cheriaf, J.C. Rocha and J. Pera, Pozzolanic properties of pulverized coal combustion bottom ash, Cement and Concrete Reserach, 29(9),1387-1391, (1999). https://doi.org/10.1016/S0008-8846(99)00098-8
  6. D. Bajare, G. Bumanis, and L. Upeniece, Coal combustion bottom ash as microfiller with pozzolanic properties for traditional concrete, Procedia Engineering, 57, 149-158, (2013). https://doi.org/10.1016/j.proeng.2013.04.022
  7. Steam, its generation and use. 39th ed. New York: Babcock & Wilcox; 1978.
  8. Rogbeck J, Knutz A. Coal bottom ash as light fill material in construction. Waste Management 1996; 16(1-3):125-8. https://doi.org/10.1016/S0956-053X(96)00035-9
  9. Bonavetti, V., Donza, H., Menendez, G., Cabrera, O., and Irassar, E.F. (2003). "Limestone filler cement in low w/c concrete: a rational use of energy." Cement and Concrete Research, Vol. 33, pp. 865-71. https://doi.org/10.1016/S0008-8846(02)01087-6
  10. U.S. Energy Information Administration. Monthly Energy Review October 2013. Available online: http://www.eia.gov/totalenergy/data/monthly/pdf/sec12_9.pdf (accessed on 5 October 2013).
  11. IPCC, "Carbon Dioxide Capture and Storage," Cambridge University Press, Cambridge, U.K., 2005.
  12. Global CCS Institute 2014, "The Global Status of CCS: 2014," Global Carbon Capture and Storage Institute Ltd., Melbourne, Australia, 2014.
  13. K. Lackner and S. Brennan, "Envisioning carbon capture and storage: expanded possibilities due to air capture, leakage insurance, and C-14 monitoring," Climate Change, vol. 96, no. 3, pp. 357-378, 2009. https://doi.org/10.1007/s10584-009-9632-0
  14. K. Lackner, S. Brennan, J. Matter, A. Park, A. Wright and B. Van Der Zwaan, "The urgency of the development of CO2 capture from ambient air," Proceedings of the National Academy of Sciences, vol. 109, no. 33, pp. 13156-13162, 2012. https://doi.org/10.1073/pnas.1108765109
  15. A. Sanna, M. Uibu, G. Caramanna, R. Kuusik and M. M. Maroto-Valer, "A review of mineral carbonation technologies to sequester CO2," Chemical Society Reviews, vol. 43, p. 8049-8080, 2014. https://doi.org/10.1039/C4CS00035H
  16. S. R. Gislason and E. H. Oelkers, "Carbon Storage in Basalt," Science, vol. 344, no. 6182, pp. 373-374, 2014. https://doi.org/10.1126/science.1250828
  17. R.N.J. Comans, H.A. van der Sloot, and P.A. Bonouvrie, "Speciation of contaminants during leaching of MSWI bottom ash (in Dutch)," ECNC-93-090, 1993.
  18. S. Kaibouchi, P. Germain, Comparative study of physico-chemical and environmental characteristics of MSWI bottom ash resulting from classical and selective collection for a valorization inroad construction, in: G. Ortiz de Urbina, H. Goumans (Eds.), WASCON Progress on the Road to Sustainability, Fifth International Conference on the Environmental and Technical Implications of Construction with Alternative Materials, San Sebastian, Spain, 4-6 juin 2003, pp. 645-653.
  19. S, Kaibouchi, Machefer d'incineration d'ordures menageres: contribution a l'etude des mecanismes de stabilisation par carbonatation et influence de la collecte selective, These de l'Institut National des Sciences Appliquees, 2003.
  20. T. van Gerven, E. van Keer, S. Arickx, M. Jaspers, G. Wauters, C. Vandecasteele, Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling, Waste Manage. 25 (2005) 291-300. https://doi.org/10.1016/j.wasman.2004.07.008
  21. E.J. Anthony, L. Jia, J. Woods, W. Roque, S. Burwell, Pacification of high calcic residues using carbon dioxide, Waste Manage. 20 (2000) 1-13. https://doi.org/10.1016/S0956-053X(99)00305-0
  22. Zandi, M., & Russell, N. V. (2007). Design of a leaching test framework for coal fly ash accounting for environmental conditions. Environmental Monitoring Assessment, 131, 509-526. http://dx.doi.org/10.1007/s10661-006-9496-y.
  23. Ram, L. C., Masto, R. E., Srivastava, N. K., George, J., Selvi, V. A., Das, T. B., Pal, S. K., Maity, S., & Mohanty, D. (2015). Potentially toxic elements in lignite and its combustion residues from a power plant. Environmental Monitoring Assessment, 187, 4148. http://dx.doi.org/10.1007/s10661-014-4148-0