DOI QR코드

DOI QR Code

STABILITY ANALYSIS OF A HOST-VECTOR TRANSMISSION MODEL FOR PINE WILT DISEASE WITH ASYMPTOMATIC CARRIER TREES

  • Received : 2016.05.05
  • Published : 2017.05.01

Abstract

A deterministic model for the spread of pine wilt disease with asymptomatic carrier trees in the host pine population is designed and rigorously analyzed. We have taken four different classes for the trees, namely susceptible, exposed, asymptomatic carrier and infected, and two different classes for the vector population, namely susceptible and infected. A complete global analysis of the model is given, which reveals that the global dynamics of the disease is completely determined by the associated basic reproduction number, denoted by $\mathcal{R}_0$. If $\mathcal{R}_0$ is less than one, the disease-free equilibrium is globally asymptotically stable, and in such a case, the endemic equilibrium does not exist. If $\mathcal{R}_0$ is greater than one, the disease persists and the unique endemic equilibrium is globally asymptotically stable.

Keywords

References

  1. L. J. S. Allen, An Introduction to Mathematical Biology, Pearson Education Ltd., USA. 2007.
  2. L. Cai, A. A. Lashari, I. H. Jung, K. O. Okosun, and Y. I. Seo, Mathematical analysis of a malaria model with partial immunity to reinfection, Abstr. Appl. Anal. 2013 (2013); http://dx.doi.org/10.1155/2013/405258.
  3. A. Fonda, "Uniformly persistent semidynamical system", Proc. Amer. Math. Soc. 104 (1988), no 1, 111-116. https://doi.org/10.1090/S0002-9939-1988-0958053-2
  4. K. Futai, Role of asymptomatic carrier trees in epidemic spread of pine wilt disease, J. For. Res. 8 (2003), 253-260. https://doi.org/10.1007/s10310-003-0034-2
  5. K. Futai, Pine wilt in Japan: from first incidence to the present, Pine Wilt Disease (2008), 5-12.
  6. K. Futai and T. Okamoto, Ecological studies on the infection sources of pine wilt. III, Analysis of spatial patterns of pine wilt (in Japanese), Trans. Mtg. Jpn. For. Soc. 100 (1989), 549-550.
  7. R. M. Giblin-Davis, Interactions of nematodes with insects in M. W. Khan, editor. Nematode interactions. Chapman and Hall, London, UK (1993), 302-344.
  8. T. Kiyohara and Y. Tokushige, Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees, J. Jpn. For. Soc. 53 (1971), 210-218.
  9. T. S. Kwon, J. H. Shin, J. H. Lim, Y. K. Kim, and E. J. Lee, Management of pine wilt disease in Korea through preventative silvicultural control, Forest Ecology and Management 261 (2011), 562-569. https://doi.org/10.1016/j.foreco.2010.11.008
  10. J. P. LaSalle, The Stability of Dynamical Systems, SIAM, Philadelphia, PA. 1976.
  11. K. S. Lee and D. Kim, Global dynamics of a pine wilt disease transmission model with nonlinear incidence rates, Appl. Math. Model. 37 (2013), no. 6, 4561-4569. https://doi.org/10.1016/j.apm.2012.09.042
  12. K. S. Lee and A. A. Lashari, Stability analysis and optimal control of pine wilt disease with horizontal transmission in vector population, Appl. Math. Comput. 226 (2014), 793-804.
  13. K. S. Lee and A. A. Lashari, Global stability of a host-vector model for pine wilt disease with nonlinear incidence rate, Abstr. Appl. Anal. 2014 (2014); http://dx.doi.org/10.1155/2014/219173.
  14. Y. Mamiya and N. Enda, Transmission of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae) by Monochamus alternatus (Coleoptera: Cerambycidae), Nematologica 18 (1972), 159-162. https://doi.org/10.1163/187529272X00395
  15. Y. Mamiya and T. Kiyohara, Description of Bursaphelenchus lignicolus n. sp. (Nematoda: Aphelenchoididae) from pine wood and histopathology of nematode-infested trees, Nematologica 18 (1972), 120-124. https://doi.org/10.1163/187529272X00296
  16. K. Morimoto and A. Iwasaki, Role of Monochamus alternatus (Coleoptera: Cerambycidae) as a vector of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae), J. Jpn. For. Soc. 54 (1972), 177-183.
  17. S. Sathyapala, Pest Risk Analysis Biosecurity Risk to New Zealand of Pinewood Nematode (Bursaphelenchus xylophilus), MAF Biosecurity Authority Forest Biosecurity Group, New Zealand 2004.
  18. X. Shi and G. Song, Analysis of the mathematical model for the spread of pine wilt disease, J. Appl. Math. 2013 (2013); http://dx.doi.org/10.1155/2013/184054.
  19. F. Takasu, Individual-basedmodeling of the spread of pine wilt disease: vector beetle dispersal and the Allee effect, Population Ecology 51 (2009), no. 3, 399-409. https://doi.org/10.1007/s10144-009-0145-5
  20. F. Takasu, N. Yamamoto, K. Kawasaki, K. Togashi, Y. Kishi, and N. Shigesada, Modeling the expansion of an introduced tree disease, Biological Invasions 2 (2000), no. 2, 141-150. https://doi.org/10.1023/A:1010048725497
  21. M. J. Wing eld and R. B. Blanchette, The pine-wood nematode, Bursaphelenchus xylophilus, in Minnesota and Wisconsin: Insect associates and transmission studies, Can. J. For. Res. 13 (1983), 1068-1076. https://doi.org/10.1139/x83-143
  22. A. Yoshimura, K. Kawasaki, F. Takasu, K. Togashi, K. Futai, and N. Shigesada, Modeling the spread of pine wilt disease caused by nematodes with pine sawyers as vector, Ecology 80 (1999), no. 5, 1691-1702. https://doi.org/10.1890/0012-9658(1999)080[1691:MTSOPW]2.0.CO;2
  23. B. G. Zhao, K. Futai, J. R. Sutherland, and Y. Takeuchi, Pine Wilt Disease, Springer 2008.

Cited by

  1. Global Stability of Malaria Transmission Dynamics Model with Logistic Growth vol.2018, pp.1607-887X, 2018, https://doi.org/10.1155/2018/5759834