DOI QR코드

DOI QR Code

ON RINGS WHOSE ANNIHILATING-IDEAL GRAPHS ARE BLOW-UPS OF A CLASS OF BOOLEAN GRAPHS

  • Guo, Jin (College of Information Science and Technology Hainan University) ;
  • Wu, Tongsuo (Department of Mathematics Shanghai Jiaotong University) ;
  • Yu, Houyi (School of Mathematics and Statistics Southwest University)
  • Received : 2016.04.23
  • Published : 2017.05.01

Abstract

For a finite or an infinite set X, let $2^X$ be the power set of X. A class of simple graph, called strong Boolean graph, is defined on the vertex set $2^X{\setminus}\{X,{\emptyset}\}$, with M adjacent to N if $M{\cap}N={\emptyset}$. In this paper, we characterize the annihilating-ideal graphs $\mathbb{AG}(R)$ that are blow-ups of strong Boolean graphs, complemented graphs and preatomic graphs respectively. In particular, for a commutative ring R such that AG(R) has a maximum clique S with $3{\leq}{\mid}V(S){\mid}{\leq}{\infty}$, we prove that $\mathbb{AG}(R)$ is a blow-up of a strong Boolean graph if and only if it is a complemented graph, if and only if R is a reduced ring. If assume further that R is decomposable, then we prove that $\mathbb{AG}(R)$ is a blow-up of a strong Boolean graph if and only if it is a blow-up of a pre-atomic graph. We also study the clique number and chromatic number of the graph $\mathbb{AG}(R)$.

Keywords

References

  1. G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, The classification of the annihilating-ideal graphs of commutative rings, Algebra Colloq. 21 (2014), no. 2, 249-256. https://doi.org/10.1142/S1005386714000200
  2. G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math. 312 (2012), no. 17, 2620-2626. https://doi.org/10.1016/j.disc.2011.10.020
  3. G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. 43 (2013), no. 5, 1415-1425. https://doi.org/10.1216/RMJ-2013-43-5-1415
  4. D. F. Anderson, M. C. Axtell, and J. A. Stickles, Jr, Zero-divisor graphs in commutative rings, Commutative algebraNoetherian and non-Noetherian perspectives, 23-45, Springer, New York, 2011.
  5. D. F. Anderson and A. Badawi, The zero-divisor graph of a commutative semigroup: a survey, Conference proceedings in memory of Professor Rudiger Gobel, Eds by Brendan Goldsmith, Manfred Droste and Lutz Strungmann, Springer (to appear).
  6. D. F. Anderson and J. D. LaGrange, Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph, J. Pure Appl. Algebra 216 (2012), no. 7, 1626-1636. https://doi.org/10.1016/j.jpaa.2011.12.002
  7. D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), no. 3, 221-241. https://doi.org/10.1016/S0022-4049(02)00250-5
  8. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
  9. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), no. 1, 108-121. https://doi.org/10.1080/00927872.2012.707262
  10. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739. https://doi.org/10.1142/S0219498811004896
  11. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, 741-753. https://doi.org/10.1142/S0219498811004902
  12. L. DeMeyer and A. Schneider, The Annihilating-ideal graph of commutative semigroups, J. Algebra 469 (2017), 402-420. https://doi.org/10.1016/j.jalgebra.2016.09.013
  13. J. Guo, T. S. Wu, and M. Ye, Complemented graphs and blow-ups of Boolean graphs, with applications to co-maximal ideal graphs, Filomat 29 (2015), no. 4, 897-908. https://doi.org/10.2298/FIL1504897G
  14. J. Komlos, G. N. Sarkozy, and E. Szemeredi, Blow-up lemma, Combinitorica 17 (1997), no. 1, 109-123. https://doi.org/10.1007/BF01196135
  15. J. D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Algebra 315 (2007), no. 2, 600-611. https://doi.org/10.1016/j.jalgebra.2006.12.030
  16. T. Y. Lam, A First Course in Noncommutative Rings, GTM 131, Springer-Verlag New York, 1991.
  17. D. C. Lu and T. S. Wu, The zero-divisor graphs which are uniquely determined by neighborhoods, Comm. Algebra 35 (2007), no. 12, 3855-3864. https://doi.org/10.1080/00927870701509156
  18. S. M. Moconja and Z. Z. Petrovic, On the structure of comaximal graphs of commutative rings with identity, Bull. Aust. Math. Soc. 83 (2011), 11-21. https://doi.org/10.1017/S0004972710001875
  19. S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533-3558. https://doi.org/10.1081/AGB-120004502
  20. V. Nikiforov, Graphs with many copies of a given subgraph, Electron. J. Combin. 15 (2008), no. 1, Note 6, 6 pp.
  21. S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348. https://doi.org/10.1080/00927872.2010.488675
  22. T. S. Wu and L. Chen, Simple graphs and zero-divisor semigroups, Algebra Colloq. 16 (2009), no. 2, 211-218. https://doi.org/10.1142/S1005386709000212
  23. T. S. Wu and D. C. Lu, Sub-semigroups determined by the zero-divisor graph, Discrete Math. 308 (2008), no. 22, 5122-5135. https://doi.org/10.1016/j.disc.2007.09.032
  24. T. S. Wu, H. Y. Yu, and D. C. Lu, The structure of finite local principal ideal rings, Comm. Algebra 40 (2012), no. 12, 4727-4738. https://doi.org/10.1080/00927872.2011.618860
  25. M. Ye, T. S. Wu, Q. Liu, and J. Guo, Graph properties of co-maximal ideal graphs of commutative rings, J. Algebra Appl. 14 (2015), no. 3, 1550027, 13 pp.
  26. M. Ye, T. S. Wu, Q. Liu, and H. Y. Yu, Implements of graph blow-up in comaximal ideal graphs, Comm. Algebra 42 (2014), no. 6, 2476-2483. https://doi.org/10.1080/00927872.2012.762924
  27. H. Y. Yu and T. S.Wu, Commutative rings R whose C(${\mathbb{AG}}(R)$) consists of only triangles, Comm. Algebra 43 (2015), no. 3, 1076-1097. https://doi.org/10.1080/00927872.2013.847950
  28. H. Y. Yu, T. S. Wu, and W. P. Gu, Artinian local rings whose annihilating-ideal graphs are star graphs, Algebra Colloq. 22 (2015), no. 1, 73-82. https://doi.org/10.1142/S1005386715000073