DOI QR코드

DOI QR Code

QTL Analysis of Concerned on Ideal Plant Form in Rice

벼의 이상적인 초형에 관여하는 QTL 분석

  • Chung, Il Kyung (Department of Biotechnology, Catholic University of Daegu) ;
  • Kim, Kyung-Min (School of Applied Biosciences, Kyungpook National University)
  • 정일경 (대구가톨릭대학교 생명공학과) ;
  • 김경민 (경북대학교 농업생명과학대학 응용생명학부)
  • Received : 2016.11.08
  • Accepted : 2016.12.19
  • Published : 2017.04.30

Abstract

Rice is the staple food of at least half of the world's population. Due to global warming, the weather is difficult to forecast nowadays. Therefore, it is necessary to breed various breeding to respond to such changes in the environment. This study was conducted to analyze the QTL about plant form, culm length, ear number and ear length by using 120 lines by anther culture, a cross between the Indica variety Cheongcheong and Japonica variety Nagdong. DNA marker was selected on the QTLs gene, and the following results were obtained. CNDH (Cheongcheong Nagdong Doubled Haploid) lines frequency distribution table curves about culm length, ear number and ear length exhibited showed a continuous variation close to a normal distribution. QTL analysis result, on culm length qPlL1-1 and qPlL1-2 were detected on the chromosome 1 and qPlL5 was detected on the chromosome 5. However, on ear length qPL2, qPL3 and qPL10, were detected on the chromosome 2, 3 and 10, while on ear number qPN1-1 and qPN1-2 were detected on the chromosome 1, qPN9 was detected on the chromosome 9. The QTLs related to culm length was found to chromosomes 5 and LOD scores were 3.81. The QTLs related to ear length was found to chromosomes 2 and 3 LOD scores were 7.13 and 3.20. The QTLs related to ear number was found to chromosome 9 and LOD scores were 4.27. Twenty two (22) Japonica cultivars and 12 Indica cultivars were analyzed polymorphisms, using selected 9 markers from the result about plant form analysis. RM5311, RM555 and RM8111 about the culm length, the ear length and number of ear were selected on the standard of Cheongcheong and Nagdong. Each rate of concordances about the culm length, the ear length and number of ear are 44.11%, 41.17% and 44.11%.

본 실험은 청청과 낙동 조합을 약배양하여 육성한 120 계통을 이용하여 이상적인 초형에 관련된 간장, 수장, 개체당 이삭수에 대한 QTLs를 분석하고 탐색된 QTLs은 다음과 같은 결과를 얻었다. 모부본인 청청과 낙동의 간장의 평균은 $75.3{\pm}6.72cm$, 수장의 평균은 $20.6{\pm}2.08cm$이었으며 개체당 이삭수의 평균은 $16.0{\pm}2.37$개로 나타났다. 120 계통의 CNDH의 간장의 평균은 $71.6{\pm}17.38cm$였으며, 수장의 평균은 $20.3{\pm}2.24cm$였으며 개체당 이삭수의 평균은 $16.1{\pm}7.17$개로 나타났다. 이에 대한 CNDH 계통의 빈도분포표의 곡선은 정규분포에 가까운 연속변이를 나타내었다. 간장, 수장, 개체당 이삭수 QTL 분석결과 간장에서 1번 염색체의 qPlL1-1, qPlL1-2, 5번 염색체의 qPlL5, 수장에서 2번 염색체의 qPL2, 3번 염색체의 qPL3, 10번 염색체의 qPL10, 개체당 이삭수에서 1번 염색체의 qPN1-1, qPN1-2, 9번 염색체의 qPN9이 탐색되었다. 간장에 대한 QTL에서 5번 염색체의 LOD 값은 3.81, 상가적 값은 5.49였으며, 수장에 대한 QTL에서 2번 염색체의 LOD 값은 7.13, 상가적 값은 -2.58 이었으며, 3번 염색체의 LOD 값은 3.20, 상가적 값은 0.88로 나타났다. 개체당 이삭수에 대한 QTL에서 9번 염색체의 LOD 값은 4.27, 상가적 값은 -1.60으로 나타났다. 초형 관련 분석 결과에서 탐색된 9개 마커를 토대로 간장에 대한 RM5311, 수장에 대한 RM555, 개체당 이삭수에 대한 RM8111을 선발하여 모부본인 청청, 낙동을 기준으로 자포니카형 22 품종, 인디카형 12 품종에 다형성을 분석하였다. 그림4와 같이 청청과 낙동과 같은 밴드양상을 나타나거나 다른크기상태의 밴드양상을 나타내었다. 간장, 수장, 개체당 이삭수의 일치율은 각각 44.11%, 41.17%, 44.11%로 나타났다.

Keywords

References

  1. Cho, Y.G., H.J. Kang, J.S. Lee, Y.T. Lee, S.J. Lim, H. Gauch and S.R. McCouch. 2007. Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. Crop Sci. 47(6):2403-2417. https://doi.org/10.2135/cropsci2006.08.0509
  2. Guo, J., E.S. Seong, Y.H. Kim, H.J. Jo, J.H. Cho and M.H. Wang. 2007. Transformation of 'Ilmibyeo' using pCAMBIA 1300 and microstructural investigation of leaves. Korean J. Plant Res. 20(5):437-441.
  3. Jin, J., W. Huang, J.P. Gao, J. Yang, M. Shi, M.Z. Zhu, D. Luo and H.X. Lin. 2008. Genetic control of rice plant architecture under domestication. Nature Genet. 40:1365-1369. https://doi.org/10.1038/ng.247
  4. Khush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35(1-2):25-34. https://doi.org/10.1023/A:1005810616885
  5. Khush, G.S. 1999. Green revolution: preparing for the 21st century. Genome 42(4):646-655. https://doi.org/10.1139/g99-044
  6. Lee, K.J., D.N. Nguyen, D.H. Choi, H.Y. Ban and B.W. Lee. 2015. Effects of elevated air temperature on yield and yield components of rice. Korean J. Agric. For. Meteorol. 17(2):156-164. https://doi.org/10.5532/KJAFM.2015.17.2.156
  7. Lim, J., H. Yang, K. Jung, S. Yoo and N. Paek. 2014. Quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice. Molecules and Cells 37(2):149-160. https://doi.org/10.14348/molcells.2014.2336
  8. Lu, C.F., L.S. Shen, Z. Tan, Y. Xu, P. He, Y. Chen and L. Zhu. 1996. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor. Appl. Genet. 93(8):1211-1217. https://doi.org/10.1007/BF00223452
  9. McCouch, S.R. 2008. Gene nomenclature system for rice. Rice 1(1):72-84. https://doi.org/10.1007/s12284-008-9004-9
  10. Ookawa, T., T. Hobo, M. Yano, K. Murata, T. Ando, H. Miura and M. Matsuoka. 2010. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nature Communications 1:132. https://doi.org/10.1038/ncomms1132
  11. Peng, S., G.S. Khush, P. Virk, Q. Tang and Z. Yingbin. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Research 108(1):32-38. https://doi.org/10.1016/j.fcr.2008.04.001
  12. Redona, E.D. and D.J. Mackill. 1998. Quantitative trait locus analysis for rice panicle and grain characteristics. Theor. Appl. Genet. 96(6):957-963. https://doi.org/10.1007/s001220050826
  13. Sasaki, T. 2001. The progress in rice genomics. Euphytica 118(2):103-111. https://doi.org/10.1023/A:1004010916631
  14. Tanksley, S.D. 1993. Mapping polygenes. Annu Rev Genet 27:205-233 (Volume publication). https://doi.org/10.1146/annurev.ge.27.120193.001225
  15. Xiao, J., J. Li, L. Yuan and N. Iwata. 1996. Identification of QTLs affecting traits of agronomic in a recombinant inbred population derived from a subspecific rice cross. Theor. Appl. Genet. 92(2):230-244. https://doi.org/10.1007/BF00223380
  16. Zhang, L., J. Wang, J. Wang, L. Wang, B. Ma, L. Zeng, Y. Qi, Q. Li and Z. He. 2015. Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. Theor. Appl. Genet. 128(6):1151-1161. https://doi.org/10.1007/s00122-015-2496-y

Cited by

  1. 유형이 다른 영농형 태양광발전시설 하부 재배 환경 및 벼 생산성 평가 vol.22, pp.4, 2017, https://doi.org/10.5532/kjafm.2020.22.4.258