DOI QR코드

DOI QR Code

Effect of Mixed Planting Ratios of Pteris multifida Poir. and Artemisia princeps Pamp. on Phytoremediation of Heavy Metals Contaminated Soil

중금속 오염토양 정화에 영향을 미치는 봉의꼬리(Pteris multifida Poir.)와 쑥(Artemisia princeps Pamp.)의 혼합식재 비율

  • Kwon, Hyuk Joon (National Institute of Biological Resources) ;
  • Jeong, Seon A (Division of Animal, Horticultural and Food Science Horticulture Graduate School, Chungbuk National University) ;
  • Shin, So Lim (National Institute of Biological Resources) ;
  • Lee, Cheol Hee (Division of Animal, Horticultural and Food Science Horticulture Graduate School, Chungbuk National University)
  • 권혁준 (국립생물자원관) ;
  • 정선아 (충북대학교 축산.원예.식품공학부 원예학전공) ;
  • 신소림 (국립생물자원관) ;
  • 이철희 (충북대학교 축산.원예.식품공학부 원예학전공)
  • Received : 2016.11.22
  • Accepted : 2017.02.15
  • Published : 2017.04.30

Abstract

This study was performed to develop the efficient phytoremediation model in the paddy soil contaminated with heavy metals by cultivating Pteris multifida and Artemisia princeps with different mixing ratios (1:0, 8:1, 6:1, 4:1). As a result of investigating the heavy metal accumulation of each plant per dried material (1 kg), content of arsenic and cadmium was the highest in aerial part of P. multifida (169.82, $1.70mg{\cdot}kg^{-1}DW$, each) among the treated group. Lead content was the highest ($12.58mg{\cdot}kg^{-1}DW$) in the aerial part of P. multifida cultivated with 8:1 mixed planting. But the content of copper and zinc was the highest (33.94, $61.78mg{\cdot}kg^{-1}DW$, each) in the aerial part of A. princeps with 8:1 treatment. Regardless of heavy metals, plant uptake from the $1m^2$ soil was the highest in 4:1 mixed planting group, which showed the best yield of A. princeps.

본 연구는 중금속으로 오염된 논토양에서 봉의꼬리(P. multifida)와 쑥(A. princeps)의 식재 비율을 1:0, 8:1, 6:1, 4:1로 달리하여 재배함으로써 토양 내 중금속별 효율적인 식물상 정화모델을 개발하기 위하여 수행되었다. 중금속별 식물 건물중 1kg 당 축적량을 분석한 결과, 비소와 카드뮴의 경우에는 봉의꼬리 단일 식재구의 봉의꼬리 지상부에서 각 169.82와 $1.70mg{\cdot}kg^{-1}DW$로 가장 많았다. 납은 8:1 식재구의 봉의꼬리 지상부에서 $12.58mg{\cdot}kg^{-1}DW$로 가장 많았다. 그러나 구리와 아연의 축적량은 8:1 식재구에서 재배한 쑥의 지상부에서 각 33.94, $61.78mg{\cdot}kg^{-1}DW$로 가장 많았다. 단위 면적당($1m^2$) 토양에서 수확한 식물의 각 중금속별총흡수량은 중금속의 종류와 관계없이 쑥의 생산량이 가장 많았던 봉의꼬리와 쑥 4:1 식재구에서 가장 높은 경향을 보였다.

Keywords

References

  1. Baker, A.J.M. and R.R. Brooks. 1989. Terrestrial higher plants which hyperaccumulate metallic elements- a review of their distribution, ecology and phytochemistry. Biorecovery 1:81-126.
  2. Brown, S.L., R.L. Chaney, J.S. Angle and A.J.M. Baker. 1994. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium contaminated soil. J. Environ. Qual. 23:1151-1157.
  3. Choi, M.K. and M.H. Chiang. 2003. Physiological and biochemical responses and heavy metal accumulation of Artemisia princeps and Helianthus annuus in the abandoned zinc mine area for phytoremediation. Korean J. Hort. Sci. Technol. 21:451-456 (in Korean).
  4. Choi, M.K., M.H. Chiang. Y.H. Cho, S.G. Lee and M.H. Chiang. 2002. Ameliorating effects of soil conditioners on heavy metal-contaminated soils in abandoned zinc mine area. J. Korean Soc. People Plants Environ. 5(2):25-27 (in Korean).
  5. Cui, Y.J., Y.G. Zhu, R.H. Zhai, D.Y. Chen, Y.Z. Huang, Y. Qiu and J.Z. Liang. 2004. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 30:1-18. https://doi.org/10.1016/S0160-4120(03)00139-9
  6. Du, W.B., Z.A. Li, B. Zou and S.L. Peng. 2005. Pteris multifida Poir., a new arsenic hyperaccumulator: characteristics and potential. Int. J. Environ. Pollut. 23:388-396. https://doi.org/10.1504/IJEP.2005.007601
  7. Han, J.H., H.J. Kwon and C.H. Lee. 2014. Effect of arsenic types in soil on growth and arsenic accumulation of Pteris multifida. Korean J. Plant Res. 27:344-353 (in Korean). https://doi.org/10.7732/kjpr.2014.27.4.344
  8. Jeong, S.K., T.S. Kim and H.S. Moon. 2010. Characteristics of heavy metals uptake by plants: based on plant species, types of heavy metals, and initial metal concentration in soil. J. Soil Groundwater Environ. 15(3):61-68 (in Korean).
  9. Ju, Y.K. 2011. Selection of plants for phytoremediation of soils contaminated with heavy metals. Department of Horticulture, M.S. Thesis, Chungbuk Nat'l. Univ., Korea (in Korean).
  10. Jung K.C., B.J. Kim and S.G. Han. 1993. Survey on heavy metals contents in native plant near old zinc-mining sites. Korean J. Environ. Agric. 12:105-111 (in Korean).
  11. Jung, G.B., W.I. Kim. J.S. Lee and K.M. Kim. 2002. Phytoremediation of soils contamination with heavy metal by long-term cultivation. Korean J. Environ. Agric. 21:31-37 (in Korean). https://doi.org/10.5338/KJEA.2002.21.1.031
  12. Jung, M.C., J.S. Ahn and H.T. Chon. 2001. Environmental contamination and sequential extraction of trace elements from mine wastes around various metalliferous mines in Korea. Geosystem. Eng. 4:50-60. https://doi.org/10.1080/12269328.2001.10541168
  13. Kim, J.G. and S.H. Lee, 1999. Phytoremediation. Korean J. Environ. Agric. 29:58-88 (in Korean).
  14. Kim, J.G., S.K. Lim, S.H. Lee, Y.M. Yoon, C.H. Lee and C.Y. Jeong. 1999. Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremediation of heavy metal contaminated soils. Korean J. Environ. Agric. 18:28-34 (in Korean).
  15. Kim, S.H. 2002. Effects of manure compost and sulfur treatment on heavy metal uptake of Artemisia princeps var. orientalis in mining area soil. Department of Agriculture, M.S. Thesis, Korea Univ., Korea (in Korean).
  16. Kor. Ministry Environ. 2009. Official test method enacted by Korean Ministry of Environment.
  17. Krishnaraj, S., M.A. Dixon and P.K. Saxena. 2000. Scented geraniums: a model system for phytoremediation. Korean J. Plant Tiss. Cult. 27: 325-337.
  18. Kumino, T., K. Saeki, K. Nagaoka, H. Oyaizu and S. Matsumoto. 2001. Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37:95-102. https://doi.org/10.1016/S1164-5563(01)01070-6
  19. Kwon, H.J., J.S. Cho and C.H. Lee. 2013. Effect of shading treatment on arsenic phytoremadiation using Pteris multifida in paddy soil. Korean J. Plant Res. 26:68-74 (in Korean). https://doi.org/10.7732/kjpr.2013.26.1.068
  20. Kwon, H.J., J.S. Cho and C.H. Lee. 2014a. Effect of sulfur powder and citric acid on arsenic phytoremediation using Pteris multifida in forest soil. J. Korean Environ. Res. Tech. 17:1-12 (in Korean).
  21. Kwon, H.J., J.S. Cho and C.H. Lee. 2014b. Screening for heavy metals accumulation ability of twelve Pteridophyta species at soil contaminated with heavy metals. J. Korean Soc. People Plant Environ. 17:203-210 (in Korean). https://doi.org/10.11628/ksppe.2014.17.3.203
  22. Kwon, H.J., J.S. Cho and C.H. Lee. 2015. Effect of arsenic concentrations in soil on growth and arsenic accumulation of Pteris multifida. J. Korean Soc. People Plant Environ. 18:273-280 (in Korean). https://doi.org/10.11628/ksppe.2015.18.4.273
  23. Lee, S.J. 1975. Studies on the identification of Korean traditional folk medicine. Korean J. Raw Med. 6:75 (in Korean).
  24. Lee. B.K., I.H. Koh and H.A. Kim. 2005. The partitioning characteristics of heavy metals in soils of Ulsan by sequential extraction procedures. Korean Soc. Environ. Eng. 27:25-35 (in Korean).
  25. Marks, P.J., W.J. Wujcik and A.F. Loncar. 1994. Remediation technologies screening matrix and reference guide (2nd Edition). DOD Environmental Technology Transfer Committee, USA. p. 611.
  26. Muller, H.W., F. Oort, B. Gelie and M. Balabane. 2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ. Pollut. 109:231-238. https://doi.org/10.1016/S0269-7491(99)00262-6
  27. Oh, W.K. 2006. A feasibility study on Pteris multifida Pior. for the phytoremediation of arsenic contaminated mine soil. Department of Environmental Engineering, M.S. Thesis, Seoul Univ., Korea.
  28. Song, S.H., Y.R. Kang and I.C. Kim. 2005. Evaluation of heavy metal contents in the floras derived from granite and coal bearing shale areas in Keumsan. Korean J. Plant Res. 18:251-256 (in Korean).
  29. Suh, J.T., D.L. Yoo, H.S. Lee, C.W. Nam and S.J. Kim. 2006. Effects of culture soil combinations on growth of Pteris multifida, Cyrtomium falcatum and Cheilanthes argentea. Korean J. Plant Res. 19:517-520 (in Korean).
  30. Suh, J.T., D.L. Yoo, H.S. Lee, C.W. Nam and S.J. Kim. 2006a. Effects of shading degree on the growth of Pteridophyte on rain-shelter. Korean J. Interior Landscape 8(2):23-27 (in Korean).
  31. Wang, H.B., M.H. Wong, C.Y. Lan, A.J.M. Baker, Y.R. Qin, W.S. Shu, G.Z. Chen and Z.H. Ye. 2007. Uptake and accumulation of arsenic by 11 Pteris taxa from Southern China. Environ. Pollut. 145:225-233. https://doi.org/10.1016/j.envpol.2006.03.015
  32. Wang, H.B., M.H. Wong, C.Y. Lan, A.J.M. Baker, Y.R. Qin, W.S. Shu, G.Z. Chen, Z.H. Ye, W.S. Shu, W.C. Li, M.H. Wong and C.Y. Lan. 2006. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of Southern China: field surveys. Int. J. Phytoremediation 8:1-11. https://doi.org/10.1080/16226510500214517
  33. Watanabe, M.E. 1997. Phytoremediation on the brink of commercialization. Environ. Sci. Technol. 31:182-186. https://doi.org/10.1021/es972219s
  34. Wei, C.Y., C. Wang, X. Sun and W.Y. Wang. 2007. Arsenic accumulation by ferns: a field survey in Southern China. Environ. Geochem. Health 29:169-177. https://doi.org/10.1007/s10653-006-9046-0
  35. Yeo, S.J. and S.J. Kim. 1997. Heavy metal speciation in soil from the Janghang smelter area. J. Miner. Soc. Korean 10:139-147.