DOI QR코드

DOI QR Code

Diversity of vir Genes in Plasmodium vivax from Endemic Regions in the Republic of Korea: an Initial Evaluation

  • Son, Ui-han (Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine) ;
  • Dinzouna-Boutamba, Sylvatrie-Danne (Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine) ;
  • Lee, Sanghyun (Pathogen Resource TF, Center for Infectious Diseases, Korea National Institute of Health, Korea CDC) ;
  • Yun, Hae Soo (Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine) ;
  • Kim, Jung-Yeon (Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC) ;
  • Joo, So-Young (Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine) ;
  • Jeong, Sookwan (Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine) ;
  • Rhee, Man Hee (Laboratory of Veterinary Physiology & Cell Signaling, College of Veterinary Medicine, Kyungpook National University) ;
  • Hong, Yeonchul (Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine) ;
  • Chung, Dong-Il (Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine) ;
  • Kwak, Dongmi (Laboratory of Parasitology, College of Veterinary Medicine, Kyungpook National University) ;
  • Goo, Youn-Kyoung (Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine)
  • Received : 2016.06.19
  • Accepted : 2017.02.19
  • Published : 2017.04.30

Abstract

Variant surface antigens (VSAs) encoded by pir families are considered to be the key proteins used by many Plasmodium spp. to escape the host immune system by antigenic variation. This attribute of VSAs is a critical issue in the development of a novel vaccine. In this regard, a population genetic study of vir genes from Plasmodium vivax was performed in the Republic of Korea (ROK). Eighty-five venous blood samples and 4 of the vir genes, namely vir 27, vir 21, vir 12, and vir 4, were selected for study. The number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd), DNA diversity (${\pi}$ and ${\Theta}_w$), and Tajima's D test value were conducted. Phylogenetic trees of each gene were constructed. The vir 21 (S=143, H=22, Hd=0.827) was the most genetically diverse gene, and the vir 4 (S=6, H=4, Hd=0.556) was the opposite one. Tajima's D values for vir 27 (1.08530, P>0.1), vir 12 (2.89007, P<0.01), and vir 21 (0.40782, P>0.1) were positive, and that of vir 4 (-1.32162, P>0.1) was negative. All phylogenetic trees showed 2 clades with no particular branching according to the geographical differences and cluster. This study is the first survey on the vir genes in ROK, providing information on the genetic level. The sample sequences from vir 4 showed a clear difference to the Sal-1 reference gene sequence, whereas they were very similar to those from Indian isolates.

Keywords

References

  1. Dalrymple U, Mappin B, Gething PW. Malaria mapping: understanding the global endemicity of falciparum and vivax malaria. BMC Med 2015; 13: 140. https://doi.org/10.1186/s12916-015-0372-x
  2. World Health Organization. World malaria report 2015. Geneva, Switzerland.
  3. Popovici J, Menard D. Challenges in antimalarial drug treatment for vivax malaria control. Trends Mol Med 2015; 21: 776-788. https://doi.org/10.1016/j.molmed.2015.10.004
  4. Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: neglected and not benign. Am J Trop Med Hyg 2007; 77: 79-87.
  5. del Portillo HA, Lanzer M, Rodriguez-Malaga S, Zavala F, Fernandez-Becerra C. Variant genes and the spleen in Plasmodium vivax malaria. Int J Parasitol 2004; 34: 1547-1554. https://doi.org/10.1016/j.ijpara.2004.10.012
  6. World Health Organization. World malaria report 2013. Geneva, Switzerland. World Health Organization. 2013.
  7. Gupta P, Sharma R, Chandra J, Kumar V, Singh R, Pande V, Singh V. Clinical manifestations and molecular mechanisms in the changing paradigm of vivax malaria in India. Infect Genet Evol 2016; 39: 317-324. https://doi.org/10.1016/j.meegid.2016.02.014
  8. Kim HC, Pacha LA, Lee WJ, Lee JK, Gaydos JC, Sames WJ, Lee HC, Bradley K, Jeung GG, Tobler SK, Klein TA. Malaria in the Republic of Korea, 1993-2007. Variables related to re-emergence and persistence of Plasmodium vivax among Korean populations and U.S. forces in Korea. Mil Med 2009; 174: 762-769. https://doi.org/10.7205/MILMED-D-01-6208
  9. Kim JY, Goo YK, Zo YG, Ji SY, Trimarsanto H, To S, Clark TG, Price RN, Auburn S. Further evidence of increasing diversity of Plasmodium vivax in the Republic of Korea in recent years. PLoS One 2016; 11: e0151514. https://doi.org/10.1371/journal.pone.0151514
  10. Linthicum KJ, Anyamba A, Killenbeck B, Lee WJ, Lee HC, Klein TA, Kim HC, Pavlin JA, Britch SC, Small J, Tucker CJ, Gaydos JC. Association of temperature and historical dynamics of malaria in the Republic of Korea, including reemergence in 1993. Mil Med 2014; 179: 806-814. https://doi.org/10.7205/MILMED-D-13-00545
  11. Rieckmann K, Davis DR, Hutton DC. Plasmodium vivax resistance to chloroquine? Lancet 1989; 2: 1183-1184.
  12. Dua VK, Kar PK, Sharma VP. Chloroquine resistant Plasmodium vivax malaria in India. Trop Med Int Health 1996; 1: 816-819.
  13. Anez A, Moscoso M, Laguna A, Garnica C, Melgar V, Cuba M, Gutierrez S, Ascaso C. Resistance of infection by Plasmodium vivax to chloroquine in Bolivia. Malaria J 2015; 14: 261. https://doi.org/10.1186/s12936-015-0774-4
  14. Thanh PV, Hong NV, Van NV, Louisa M, Baird K, Xa NX, Peeters Grietens K, Hung le X, Duong TT, Rosanas-Urgell A, Speybroeck N, D'Alessandro U, Erhart A. Confirmed Plasmodium vivax resistance to chloroquine in central Vietnam. Antimicrob Agents Chemother 2015; 59: 7411-7419. https://doi.org/10.1128/AAC.00791-15
  15. Fernandez-Becerra C, Pein O, de Oliveira TR, Yamamoto MM, Cassola AC, Rocha C, Soares IS, de Braganca Pereira CA, del Portillo HA. Variant proteins of Plasmodium vivax are not clonally expressed in natural infections. Mol Microbiol 2005; 58: 648-658. https://doi.org/10.1111/j.1365-2958.2005.04850.x
  16. Pasternak ND, Dzikowski R. PfEMP1: an antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum. Int J Biochem Cell Biol 2009; 41: 1463-1466. https://doi.org/10.1016/j.biocel.2008.12.012
  17. Fernandez-Becerra C, Yamamoto MM, Vencio RZ, Lacerda M, Rosanas-Urgell A, del Portillo HA. Plasmodium vivax and the importance of the subtelomeric multigene vir superfamily. Trends Parasitol 2009; 25: 44-51. https://doi.org/10.1016/j.pt.2008.09.012
  18. Lopez FJ, Bernabeu M, Fernandez-Becerra C, del Portillo HA. A new computational approach redefines the subtelomeric vir superfamily of Plasmodium vivax. BMC Genomics 2013; 14: 8. https://doi.org/10.1186/1471-2164-14-8
  19. Carvalho BO, Lopes SC, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC, Mamoni R, Leite JA, Rodrigues MM, Soares IS, Oliveira TR, Wunderlich G, Lacerda MV, del Portillo HA, Araujo MO, Russell B, Suwanarusk R, Snounou G, Renia L, Costa FT. On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J Infect Dis 2010; 202: 638-647. https://doi.org/10.1086/654815
  20. Bernabeu M, Lopez FJ, Ferrer M, Martin-Jaular L, Razaname A, Corradin G, Maier AG, del Portillo HA, Fernandez-Becerra C. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell Microbiol 2012; 14: 386-400. https://doi.org/10.1111/j.1462-5822.2011.01726.x
  21. Arevalo-Herrera M, Chitnis C, Herrera S. Current status of Plasmodium vivax vaccine. Hum vaccin 2010; 6: 124-132. https://doi.org/10.4161/hv.6.1.9931
  22. Makobongo MO, Keegan B, Long CA, Miller LH. Immunization of Aotus monkeys with recombinant cysteine-rich interdomain region 1 alpha protects against severe disease during Plasmodium falciparum reinfection. J Infect Dis 2006; 193: 731-740. https://doi.org/10.1086/500150
  23. Chen Q, Pettersson F, Vogt AM, Schmidt B, Ahuja S, Liljestrom P, Wahlgren M. Immunization with PfEMP1-$DBL1{\alpha}$ generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine 2004; 22: 2701-2712. https://doi.org/10.1016/j.vaccine.2004.02.015
  24. Gupta P, Das A, Singh OP, Ghosh SK, Singh V. Assessing the genetic diversity of the vir genes in Indian Plasmodium vivax population. Acta Trop 2012; 124: 133-139. https://doi.org/10.1016/j.actatropica.2012.07.002
  25. Gupta P, Pande V, Das A, Singh V. Genetic polymorphisms in VIR genes among Indian Plasmodium vivax populations. Korean J Parasitol 2014; 52: 557-564. https://doi.org/10.3347/kjp.2014.52.5.557
  26. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 1993; 61: 315-320. https://doi.org/10.1016/0166-6851(93)90077-B
  27. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95-98.
  28. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  29. Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol 1975; 7: 256-276. https://doi.org/10.1016/0040-5809(75)90020-9
  30. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics 1983; 105: 437-460.
  31. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123: 585-595.
  32. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  33. Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 2009; 9: 555-566. https://doi.org/10.1016/S1473-3099(09)70177-X
  34. Janssen CS, Phillips RS, Turner CM, Barrett MP. Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites. Nucleic Acids Res 2004; 32: 5712-5720. https://doi.org/10.1093/nar/gkh907
  35. Yam XY, Brugat T, Siau A, Lawton J, Wong DS, Farah A, Twang JS, Gao X, Langhorne J, Preiser PR. Characterization of the Plasmodium interspersed repeats (PIR) proteins of Plasmodium chabaudi indicates functional diversity. Sci Rep 2016; 6: 23449. https://doi.org/10.1038/srep23449
  36. Jackson AP. Gene family phylogeny and the evolution of parasite cell surfaces. Mol Biochem Parasitol 2016; 209: 64-75. https://doi.org/10.1016/j.molbiopara.2016.03.007
  37. A-Elgadir TM, Theander TG, Elghazali G, Nielsen MA, A-Elbasit IE, Adam I, Troye-Blomberg M, Elbashir MI, Giha HA. Determinants of variant surface antigen antibody response in severe Plasmodium falciparum malaria in an area of low and unstable malaria transmission. Scand J Immunol 2016; 63: 232-240.
  38. Hudson RR, Kaplan NL. Deleterious background selection with recombination. Genetics 1995; 141: 1605-1617.
  39. Kang JM, Ju HL, Kang YM, Lee DH, Moon SU, Sohn WM, Park JW, Kim TS, Na BK. Genetic polymorphism and natural selection in the C-terminal 42 kDa region of merozoite surface protein-1 among Plasmodium vivax Korean isolates. Malar J 2012; 11: 206. https://doi.org/10.1186/1475-2875-11-206

Cited by

  1. A bite to fight: front-line innate immune defenses against malaria parasites vol.112, pp.1, 2017, https://doi.org/10.1080/20477724.2018.1429847
  2. Genetic Diversity of Plasmodium vivax Causing Epidemic Malaria in the Republic of Korea vol.56, pp.6, 2017, https://doi.org/10.3347/kjp.2018.56.6.545
  3. Genetic polymorphism of vir genes of Plasmodium vivax in Myanmar vol.80, pp.None, 2021, https://doi.org/10.1016/j.parint.2020.102233