DOI QR코드

DOI QR Code

Seismic Fragility Analysis of a LNG Tank with Friction Pendulum System of Various Friction Coefficient

마찰재 물성변화에 따른 마찰진자시스템을 적용한 LNG 탱크의 지진취약도 분석

  • Moon, Ji-Hoon (Department of Civil & Environmental Engineering, Yonsei University) ;
  • Kim, Ji-Su (Department of Civil & Environmental Engineering, Yonsei University) ;
  • Lee, Tae-Hyung (Department of Civil Engineering, Konkuk University) ;
  • Han, Tong-Seok (Department of Civil & Environmental Engineering, Yonsei University)
  • 문지훈 (연세대학교 토목환경공학과) ;
  • 김지수 (연세대학교 토목환경공학과) ;
  • 이태형 (건국대학교 인프라시스템공학과) ;
  • 한동석 (연세대학교 토목환경공학과)
  • Received : 2016.09.21
  • Accepted : 2017.02.08
  • Published : 2017.04.28

Abstract

The friction pendulum system(FPS) is a kind of seismic isolation devices for isolating structures from an earthquake. To analyze the effect of friction materials used in the friction pendulum system, fragility analysis of LNG tank with seismic isolation system was conducted. In this study, titanium dioxide($TiO_2$) nanoparticles were incorporated into polyvinylidene fluoride(PVDF) matrix to produce friction materials attached to the FPS. The base moment of the concrete outer tank and the acceleration of the structure were evaluated from different mixing ratios of constituents for the friction materials. The seismic fragility curves were developed based on two types of limit state. It is confirmed that evaluation of combined fragility curves with several limit states can be applied to select the optimum friction material satisfying the required performance of the FPS for various infrastructure.

이 논문에서는 LNG 탱크를 지진으로부터 격리시키는 면진장치의 일종인 마찰진자시스템(FPS)의 성능변화에 따른 구조물 응답 및 지진취약도를 분석하였다. 마찰진자시스템(FPS)에 사용되는 마찰재 시편을 PVDF와 $TiO_2$의 배합비율에 따라 제작하였다. 제작한 마찰재 시편의 물성을 면진받침에 적용하여 구조물의 가속도 응답 및 외조 콘크리트의 하부 모멘트에 대하여 분석하고 각각의 한계상태에 대해 지진취약도를 분석하였다. 구조물의 지진취약도 분석을 통한 최적의 배합비를 가지는 마찰재 선정을 위해 각 한계상태에 따른 지진취약도 곡선의 가중치 설정 후 조합이 필요한 것을 확인하였다. 이를 통하여 다양한 구조물에 적용되는 마찰진자시스템의 요구 성능을 만족하는 최적의 마찰재 선정이 가능할 것으로 기대된다.

Keywords

References

  1. AASHTO (2010) Guide Specification for Seismic Isolation Design, American Association of State Highway and Transportation Officials, Washington, DC, p.47.
  2. ASTM (2014) D 1894 Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting, ASTM International, West Conshohocken, p.7.
  3. Buckle, I.G., Constantinou, M.C., Dicleli, M., Ghasemi, H. (2006) Seismic Isolation of highway Bridges, Special Report MCEER-06-SP07, MCEER, New York, p.194.
  4. Constantinou, M., Mokha, A., Reinhorn, A. (1990) Teflon Bearings in BaseIisolation II: Modeling, J. Struct. Eng., 116(2), pp.455-474. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(455)
  5. Constantinou, M.C., Whittaker, A.S., Kalpakidis, Y., Fenz, D.M., Warn, G.P. (2007) Performance of Seismic Isolation Hardware under Service and Seismic Loading, Technical Report MCEER-07-0012, MCEER, New York, p.471.
  6. Haroun, M.A., Housner, G.W. (1981) Seismic Design of Liquid Storage Tanks, J. Tech. Counc. of ASCE, 107(1), pp.191-207.
  7. Housener, G.W. (1963) The Dynamic behavior of Water Tanks, Bull. Seismol. Soc. Am., 53(2), pp.381-387.
  8. Kim, J.S. (2016) Fragility Analysis of LNG Storage Tank with Seismic Isolation Systems (Master dissertation), Yonsei University, Seoul, Korea.
  9. Lee, T.H., Mosalam, K.M. (2003) Sensitivity of Seismic Demand of a Reinforced Concrete Shear-wall Building, In Ninth International Conference on Applications of Statistics and Probability in Civil Engineering(ICASP9), San Francisco, pp.1511-1518.
  10. Lee, T.-H., Kwon, S., Park, H.-S. (2013) Development of Seismic Fragility Functions of LNG Storage Tanks by an Analytical Method, J. KOSHAM, 13(1), pp.89-95.
  11. McKenna, F., Fenves, G. L., Jeremic, B., Scott, M. (2000) Open System for Earthquake Engineering Simulation, URL http://opensees.berkeley.edu.
  12. Naeim, F., Kelly, J.M. (1999) Design of Seismic Isolated Structures: From Theory to Practice, John Wiley & Sons.
  13. O'Rourke, M.J., So, P. (2000) Seismic Fragility Curves for On-grade Steel Tanks, Earthq. Spectra, 16(4), pp.801-815. https://doi.org/10.1193/1.1586140
  14. PEER Center (2011) Users Manual for the PEER Ground Motion Database Web Application, Pacific Earthquake Engineering Research Center, URL http://peertestbeds.net.
  15. Shinozuka, M., Feng, M.Q., Lee, J., Naganuma, T. (2000) Statistical Analysis of Fragility Curves, J. Eng. Mech., 126(12), pp.1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  16. Wu, S.C., Yang, S.M., Haug, E.J. (1986) Dynamics of Mechanical Systems with Coulomb Friction, Stiction, Impact and Constraint Addition-deletion-II Planar Systems, Mech. & Mach. Theory, 21(5), pp.407-416. https://doi.org/10.1016/0094-114X(86)90089-3
  17. Zayas, V.A., Low, S.S., Mahin, S.A. (1990) A Simple Pendulum Technique for Achieving Seismic Isolation, Earthq.Spectra, 6(2), pp.317-333. https://doi.org/10.1193/1.1585573