DOI QR코드

DOI QR Code

Hydrologic variability in the Sumjin river dam basin according to typhoon genesis pattern

한반도 영향 태풍의 경로 유형에 따른 섬진강댐 유역의 수문변동 특성분석

  • 강호영 (서울시립대학교 토목공학과) ;
  • 최지혁 (서울시립대학교 토목공학과) ;
  • 김종석 (서울시립대학교 토목공학과) ;
  • 문영일 (서울시립대학교 토목공학과)
  • Received : 2017.01.04
  • Accepted : 2017.03.07
  • Published : 2017.04.30

Abstract

In this study, we analyzed typhoon affecting Korean Peninsula and runoff characteristic changes according to the typhoon based on Sumjin river dam, a representative multi-purpose dam. We quantified typhoon flow by applying the typhoon domain, and will provide base data for climate change adaptation and counterstrategy through correlation analysis of the change of typhoon statistical data and Indicators of Hydrologic Alterations (IHA). Korean Peninsula impact typhoon has a great effect on the scale of peak flow and the change of occurrence time. The occurrence frequency and duration of the peak flow were analyzed to be relatively unrelated to the typhoon affected by the Korean peninsula. These changes were also confirmed in the correlation analysis results. Correlation coefficient between the peak flow (0.41) and peak flow occurrence time (correlation coefficient = 0.83) was positively correlated with the Korean peninsula influenced typhoon.

본 연구에서는 한반도의 대표적인 다목적 댐인 섬진강댐을 대상으로 한반도에 영향을 미치는 태풍과 태풍의 발생에 따른 유출특성변화를 분석하였다. 태풍영향 도메인을 적용하여 태풍의 이동 경로를 유형화하고 태풍유량을 정량화하고, 태풍정보와 대상유역의 수문변화지표의 순위분석과 상관분석을 통하여 기후변화의 적응과 대책수립에 대한 정보를 제공하고자 한다. 한반도 태풍도메인을 통과한 한반도 영향 태풍(n)은 첨두유량의 규모와 발생시기의 변화에는 많은 영향을 미치는 것으로 나타났다. 그러나 첨두유량의 발생빈도와 지속시간은 한반도 영향 태풍과 상대적으로 관계가 적은 것으로 분석되었다. 이러한 변화는 상관성 분석결과에서도 확인할 수 있었다. 첨두유량의 발생규모(correlation coefficient = 0.41)와 첨두발생시간(correlation coefficient = 0.83)은 한반도 영향 태풍(n)과 양의 상관관계가 나타났다. 따라서 본 연구에서는 섬진강 댐을 대상으로 한반도 영향 태풍의 경로를 유형화하고, 각 태풍 유형에 따라 섬진강 댐 유역의 수문변동에 대한 특성을 분석하였다. 이는 한반도 수생태계환경 시스템 변화에 대한 대응방안의 기초자료를 제공할 것으로 기대된다.

Keywords

References

  1. Choi, K. S., Park, S. W., Chang, K. H., Lee, J. H., and Jun, S. H. (2013). "Change of typhoon activity in early typhoon season by siberian high intensity." Climate Research, Vol. 8, No. 2, pp. 81-91. https://doi.org/10.14383/cri.2013.8.2.81
  2. Delphine, B. D., Souissi, S., and Hwang, J. S. (2013). "Population dynamics of calanoid copepods in the subtropical mesohaline Danshuei Estuary (Taiwan) and typhoon effects." Ecological Research, Vol. 28, No. 5, pp. 771-780. https://doi.org/10.1007/s11284-013-1052-y
  3. Kang, H. Y., Lee, S. H., Kim, J. S., and Moon, Y. I. (2015). "Characterizing changes of hydrologic variability at multi-purpose dams in Korea." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 1, pp. 123-130. https://doi.org/10.9798/KOSHAM.2015.15.1.123
  4. Kim, H. J., Ahn, J. H., Choi, C. W., and Yi, J. E. (2011). "Optimal reservoir operation using goal programming for flood season." Magazine of Korean Society of Hazard Mitigation, Vol. 11, No. 2, pp. 147-156. https://doi.org/10.9798/KOSHAM.2011.11.2.147
  5. Kim, J. S., and Jain, S. (2011). "Precipitation trends over the Korean peninsula: typhoon-induced changes and a typology for characterizing climate related risk." Environmental Research Letters, Vol. 6, No. 3, 034033. https://doi.org/10.1088/1748-9326/6/3/034033
  6. Kim, J. S., Kang, H. Y., Son, C. Y., and Moon, Y. I. (2016). "Spatial variations in typhoon activities and precipitation trends over the Korean Peninsula." Journal of Hydro-environmental Research, Vol. 13, pp. 144-151. https://doi.org/10.1016/j.jher.2014.12.005
  7. Kim, B. S., Kim, B. K., and Kwon, H. H. (2011). "Assessment of the impact of climate change on the flow regime of the Han River basin using indicators of hydrologic alteration." Hydrological Processes, Vol. 25. No. 5, pp. 691-704. https://doi.org/10.1002/hyp.7856
  8. Kim, J. S., Kim, S. T., Wang, L., Wang, X., and Moon, Y. I. (2016). "Tropical cyclone activity in the northwestern Pacific associated with decaying Central pacific El Ninos." Stochastic Environmental Research and Risk Assessment, Vol. 30, No. 5, pp.1335-1345. https://doi.org/10.1007/s00477-016-1256-0
  9. Kim, J. S., Yoon, S. K., Oh, S. M., and Moon, Y. I. (2015). "Changes in typhoon activities and regional precipitation variability over the Korean peninsula according to different phases of El Nino." Advances in Meteorology, 983268, pp. 1-8.
  10. Ministry of Land, Infrastructure, and Transportation (MOLIT) (2012). "Dam Construction Long-Term Plan (2007-2011)."
  11. Moon, I. J., and Choi, E. S. (2011). "A definition and criterion on typhoons approaching to the Korean peninsula for the objective statistical analysis." Atmosphere. Korean Meteorological Society, Vol. 21, No. 1, pp. 45-55.
  12. Richter, B. D., Baumgartner, J. V., Wiginton, R., and Braun, D. P. (1997). "How much water does a river need?" Freshwater Biology, Vol. 37, No. 1, pp. 231-249. https://doi.org/10.1046/j.1365-2427.1997.00153.x
  13. Son, C. Y., Kim, J. S., Moon, Y. I., and Lee, J. H. (2014). "Characteristics of tropical cyclone-induced precipitation over the Korean river basins according to three evolution patterns of the Central-Pacific El Nino." Stochastic Environmental Research and Risk Assessment, Vol. 28, No. 5, pp. 1147-1156. https://doi.org/10.1007/s00477-013-0804-0
  14. Sriver, R. L., and Huber, M. (2007). "Observational evidence for an ocean heat pump induced by tropical cyclones." Nature, Vol. 447, No. 7144, pp. 577-580. https://doi.org/10.1038/nature05785
  15. The Intergovernmental Panel on Climate Change (IPCC) (2014). "Climate Change 2014 Synthesis Report." http://ipcc.ch
  16. Trenberth, K. E., Davis, C. A., and Fasullo, J. (2007). "Water and energy budgets of hurricanes: case studies of Ivan and Katrina." Journal of Geophysical Research, Vol. 112, No. D23, 106, doi: 10.1029/2006JD008303