초록
현재 제공되고 있는 모바일 게임 추천 시스템들은 실제 사용자가 선호하는 게임에 대한 패턴을 추천하는지, 아니면 단순히 관심 정도의 패턴을 추천하는지 알 수 없어 사용자의 주관적인 선호도를 직접적으로 알 수 없다는 문제점이 있다. 이를 해결하기 위하여 사용자들의 주관적인 선호도를 직접적으로 반영한 계층적 분석 방법(Analytic Hierarchy Process, AHP) 기반 모바일 게임 추천 시스템을 개발하였지만, 사용자들이 선호하는 항목에 대한 척도가 같다고 할지라도 선호하는 정도까지 동일하다고 볼 수 없다는 문제가 발생하였다. 본 연구에서는 이와 같은 문제점을 해결하기 위해 Fuzzy-AHP 기법의 삼각 퍼지 수(Triangular Fuzzy Numbers)와 베이지안 네트워크에서 평가 항목의 독립성을 적용한 모바일 게임 추천 시스템을 구현하였다. 그 결과 본 연구에서 제안한 추천 시스템이 기존의 시스템과 비교하여 볼 때 추천 결과의 정확도 및 사용자의 만족도가 가장 높은 것을 확인할 수 있었다.
The current available recommendation systems for mobile games have a couple of problems. First, there is no knowing whether they make a pattern recommendation for games that actual users prefer or for games that they are simply interested in. It is also impossible to know the subjective preference of users in a direct manner. An AHP(Analytic Hierarchy Process)-based recommendation system for mobile games was thus developed to reflect the subjective preference of users directly, but it had its own problem since the degree of preference could vary among users in spite of the same scale for their preferable items. In an effort to solve those problems, this study implemented a recommendation system for mobile games by applying triangular fuzzy numbers of the Fuzzy-AHP technique and the independence of evaluation items in the Bayesian Network. The findings show that the proposed recommendation system recorded the highest accuracy of recommendation results and the highest level of user satisfaction.