DOI QR코드

DOI QR Code

A HYBRID PROJECTION METHOD FOR COMMON ZERO OF MONOTONE OPERATORS IN HILBERT SPACES

  • Truong, Minh Tuyen (Department of Mathematics and Informatics Thai Nguyen University of Science)
  • 투고 : 2016.04.29
  • 발행 : 2017.04.30

초록

The purpose of this paper is to introduce some strong convergence theorems for the problem of finding a common zero of a finite family of monotone operators and the problem of finding a common fixed point of a finite family of nonexpansive in Hilbert spaces by hybrid projection method.

키워드

참고문헌

  1. V. Barbu and Th. Precupanu, Convexity and Optimization in Banach spaces, Editura Academiei R. S. R., Bucharest, 1978.
  2. H. H. Bauschke, E. Matouskova, and S. Reich, Projection and proximal point methods convergence results and counterexamples, Nonlinear Anal. 56 (2004), no. 5, 715-738. https://doi.org/10.1016/j.na.2003.10.010
  3. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, Cambridge, UK, 1990.
  4. O. Guler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), no. 2, 403-419. https://doi.org/10.1137/0329022
  5. G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), no. 1, 336-346. https://doi.org/10.1016/j.jmaa.2006.06.055
  6. J. Kang, Y. Su, and X. Zhang, Hybrid algorithm for fixed points of weak relatively nonexpansive mappings and applications, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 4, 755-765. https://doi.org/10.1016/j.nahs.2010.05.002
  7. B. Martinet, Regularisation d'inequations variationnelles par approximations succes-sives, Rev. FranMc-aise Informat, Recherche Operationnalle 4 (1970), 154-158.
  8. K. Nakajo and W. Takahashi, Strong convergence theorem for nonexpansive mappings and nonexpansive semigroup, J. Math. Anal. Appl. 279 (2003), no. 2, 372-379. https://doi.org/10.1016/S0022-247X(02)00458-4
  9. R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. on Contr. and Optim. 14 (1976), no. 5, 887-897.
  10. M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in Hilbert space, Math. Progr. 87 (2000), no. 1, 189-202. https://doi.org/10.1007/s101079900113
  11. Y. F. Su, Z. M. Wang, and H. K. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616-5628. https://doi.org/10.1016/j.na.2009.04.053
  12. Y. Yao and R. Chen, Strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Appl. Math. Comput. 32 (2010), no. 1, 69-82. https://doi.org/10.1007/s12190-009-0233-x