DOI QR코드

DOI QR Code

SOME RESULTS ON COMPLEX DIFFERENTIAL-DIFFERENCE ANALOGUE OF BRÜCK CONJECTURE

  • Chen, Min Feng (LMIB and School of Mathematics and Systems Science Beihang University) ;
  • Gao, Zong Sheng (LMIB and School of Mathematics and Systems Science Beihang University)
  • Received : 2016.05.30
  • Published : 2017.04.30

Abstract

In this paper, we utilize the Nevanlinna theory and uniqueness theory of meromorphic function to investigate the differential-difference analogue of $Br{\ddot{u}}ck$ conjecture. In other words, we consider ${\Delta}_{\eta}f(z)=f(z+{\eta})-f(z)$ and f'(z) share one value or one small function, and then obtain the precise expression of transcendental entire function f(z) under certain conditions, where ${\eta}{\in}{\mathbb{C}}{\backslash}\{0\}$ is a constant such that $f(z+{\eta})-f(z){\not\equiv}0$.

Keywords

References

  1. W. Bergweiler and J. K. Langlely, Zeros of difference of meromorphic functions, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 133-147. https://doi.org/10.1017/S0305004106009777
  2. R. Bruck, On entire functions which share one value CM with their first derivative, Results Math. 30 (1996), no. 1-2, 21-24. https://doi.org/10.1007/BF03322176
  3. Z. X. Chen, On the difference counterpart of Bruck's conjecture, Acta. Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 3, 653-659.
  4. Z. X. Chen and H. Y. Yi, On sharing values of meromorphic functions and their differences, Results Math. 63 (2013), no. 1-2, 557-565. https://doi.org/10.1007/s00025-011-0217-7
  5. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f($z+{\eta}$) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. https://doi.org/10.1007/s11139-007-9101-1
  6. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. 37 (1988), no. 1, 88-104.
  7. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J. Math. Anal. Appl. 223 (1998), no. 1, 88-95. https://doi.org/10.1006/jmaa.1998.5959
  8. W. K. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv. 34 (1960), 75-84. https://doi.org/10.1007/BF02565929
  9. W. K. Hayman, Meromorphic Function, Clarendon Press, Oxford, 1964.
  10. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for perodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363. https://doi.org/10.1016/j.jmaa.2009.01.053
  11. I. Laine, Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993.
  12. S. Li and Z. S. Gao, Entire functions sharing one or two finite values CM with their shifts or difference operator, Arch. Math. 97 (2011), no. 5, 475-483. https://doi.org/10.1007/s00013-011-0324-4
  13. S. Li and Z. S. Gao, Erratum to : A note on Bruck's Conjecture, Arch. Math. 99 (2012), no. 3, 255-259. https://doi.org/10.1007/s00013-012-0413-z
  14. X. M. Li and H. X. Yi, Entire functions sharing an entire function of smaller order with their difference operator, Acta. Math. Sin. (Engl. Ser.) 30 (2014), no. 3, 481-498. https://doi.org/10.1007/s10114-014-2042-x
  15. K. Liu and X. J. Dong, Some results related to complex differential-difference equations of certain types, Bull. Korean. Math. Soc. 51 (2014), no. 5, 1453-1467. https://doi.org/10.4134/BKMS.2014.51.5.1453
  16. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic, Dordrecht, 2003.