References
- P. Agarwal, J. Choi, and S. Jain, Extended hypergeometric functions of two and three variables, Commun. Korean Math. Soc. 30 (2015), no. 4, 403-414. https://doi.org/10.4134/CKMS.2015.30.4.403
- G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
- M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
- M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and confluent hypergeometric function, Appl. Math. Comput. 159 (2004), no. 2, 589-602. https://doi.org/10.1016/j.amc.2003.09.017
-
A. Hasanov and M. Turaev, Some decomposition formulas associated with the Lauricella function
$F_{A}^{(r)}$ and other multiple hypergeometric functions, Appl. Math. Comput. 187 (2007), 195-201. - A. Hasanov and M. Turaev, Decomposition formulas associated with the Lauricella multivariable hypergeo-metric functions, Comput. Math. Appl. 53 (2007), no. 7, 1119-1128. https://doi.org/10.1016/j.camwa.2006.07.007
- N. U. Khan and M. Ghayasuddin, Generalization of extended Appell's and Lauricella's hypergeometric functions, Honam Math. J. 37 (2015), no. 1, 113-126. https://doi.org/10.5831/HMJ.2015.37.1.113
- D. M. Lee, A. K. Rathie, R. K. Parmar, and Y. S. Kim, Generalization of extended beta function, hypergeometric and confluent hypergeometric functions, Honam Math. J. 33 (2011), no. 2, 187-206. https://doi.org/10.5831/HMJ.2011.33.2.187
- H. Liu, Some generating relations for extended Appell's and Lauricella hypergeometric functions, Rocky Moutain J. Math. 41 (2014), no. 6, 1987-2007.
- M. J. Luo, G. V. Milovanovic, and P. Agawal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput. 248 (2014), 631-651.
- M. A. Ozarslan and E. Ozergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comp. Model. 52 (2010), no. 9-10, 1825-1833. https://doi.org/10.1016/j.mcm.2010.07.011
- E. Ozergin, M. A. Ozarslan, and A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601-4610. https://doi.org/10.1016/j.cam.2010.04.019
- E. D. Rainville, Special Functions, Macmillan, New York, 1960.
- H. M. Srivastava, P. Agawal, and R. Jain, Generating functions for the generalized Gauss hypergeometric functions, Appl. Math. Comput. 247 (2014), 348-352.
- H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsvier Science Publishers, Amsterdam, London and New York, 2012.
- H.M. Srivastava and H. L.Manocha, A Treatise on Generating Functions, Ellis Horwood Limited, 1984.
- R. Vidunas, Specialization of Appell's functions to univariate hypergeometric functions, J. Math. Anal. Appl. 355 (2009), no. 1, 145-163. https://doi.org/10.1016/j.jmaa.2009.01.047
-
Wolfram Research, Inc., Hypergeometric
$_1F_1$ , at http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric$_1F_1$ /.
Cited by
- Change-point detection and bootstrap for Hilbert space valued random fields vol.155, 2017, https://doi.org/10.1016/j.jmva.2017.01.007