DOI QR코드

DOI QR Code

A NOTE ON JORDAN DERIVATIONS OF TRIVIAL GENERALIZED MATRIX ALGEBRAS

  • Li, Yanbo (School of Mathematics and Statistics Northeastern University at Qinhuangdao) ;
  • Zheng, Chenyou (School of Mathematics and Statistics Northeastern University at Qinhuangdao)
  • 투고 : 2016.04.25
  • 발행 : 2017.04.30

초록

H. R. Ebrahimi Vishki et al. conjectured in [1], that if every Jordan higher derivation on a trivial generalized matrix algebra $\mathcal{G}=(A,M,N,B)$ is a higher derivation, then either M = 0 or N = 0. In this note, we will give a class of counter examples.

키워드

참고문헌

  1. H. R. Ebrahimi Vishki, M. Mirzavaziri, and F. Moafian, Jordan higher derivations on trivial extenion algebras, Commun. Korean Math. Soc. 31 (2016), no. 2, 247-259. https://doi.org/10.4134/CKMS.2016.31.2.247
  2. A. Haghany, Hopficity and co-Hopficity for Morita contexts, Comm. Algebra 27 (1999), no. 1, 477-492. https://doi.org/10.1080/00927879908826443
  3. I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2
  4. N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502. https://doi.org/10.1090/S0002-9947-1950-0038335-X
  5. Y.-B. Li and F. Wei, Semi-centralizing maps of generalized matrix algebras, Linear Algebra Appl. 436 (2012), no. 5, 1122-1153. https://doi.org/10.1016/j.laa.2011.07.014
  6. Y.-B. Li and F. Wei, Jordan derivations and Lie derivations of path algebras, Bulletin of the Iranian Mathematical Society, accepted, (2015).
  7. Y.-B. Li and F. Wei, Lie derivations of dual extensions of algebras, Colloq. Math. 143 (2015), no. 1, 65-82.
  8. Y.-B. Li and F. Wei, Jordan derivations of two extensions of algebras, Preprint.
  9. Y.-B. Li, L. V. Wyk, and F. Wei, Jordan derivations and antiderivations of generalized matrix algebras, Oper. Matrices 7 (2013), no. 2, 399-415.
  10. Y.-B. Li and Z.-K. Xiao, Additivity of maps on generalized matrix algebras, Electron. J. Linear Alegbra 22 (2011), 743-757.
  11. X. Liang, F. Wei, Z. Xiao, and A. Fosner, Centralizing traces and Lie triple isomor-phisms on generalized matrix algebras, Linear Multilinear Algebra 63 (2015), no. 9, 1786-1816. https://doi.org/10.1080/03081087.2014.974490
  12. K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Diagaku Sect. A 6 (1958), 83-142.
  13. F. Wei and Z. Xiao, Commuting traces and Lie isomorphisms on generalized matrix algebras, Oper. Matrices 8 (2014), no. 3, 821-847.
  14. Z.-K. Xiao, Jordan derivations of incidence algebras, Rocky Mountain J. Math. 45 (2015), no. 4, 1357-1368. https://doi.org/10.1216/RMJ-2015-45-4-1357
  15. Z.-K. Xiao and F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl. 433 (2010), no. 11-12, 2178-2197. https://doi.org/10.1016/j.laa.2010.08.002
  16. Z.-K. Xiao and F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra Appl. 433 (2010), no. 10, 2615-2622.
  17. Z.-K. Xiao and F. Wei, Jordan higher derivations on some operator algebras, Houston J. Math. 38 (2012), no. 1, 275-293.
  18. J.-H. Zhang and W.-Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl. 419 (2006), no. 1, 251-255. https://doi.org/10.1016/j.laa.2006.04.015