Abstract
New infectious diseases such as MERS have been in need of many measures such as initial discovery, isolation, and crisis response. In addition, the culture of hospitals is changing, such as the general public 's visiting and Nursing Care Integration Services. However, as the qualifications and regulations of medical personnel in hospitals become rigid, overseas such as linens, wastes movements are replacing possible works with robots. we have developed a hospital logistics robot that can carry out various goods delivery within a hospital, and can move various kinds of objects safely to a desired location. In this thesis, we have studied a hospital logistics robot that can carry out various kinds of goods delivery within the hospital, and can move various kinds of objects such as waste, and linen safely to a desired location. The movement of a robot in a hospital may cause a collision between a person and an object, so that the collision must be prevented. In order to prevent collision, it is necessary to recognize whether or not an object exists in the movement path of the robot. And if there is an object, it should recognize whether it moves or not. In order to recognize human beings and objects, we recognize the person with face/body recognition technology and generate the context awareness of the object using 3D Vision image segmentation technology. We use the generated information to create a map that considers objects and person in the robot moving range. Thus, the robot can be operated safely and efficiently.
최근 지속적으로 발생하고 있는 메르스와 같은 신종 감염병은 초기발견, 격리, 위기대응 등 많은 대응책을 필요로하고 있으며 아울러 일반인의 문병과 간호 간병 통합서비스 시행 등 병원의 문화가 바뀌는 추세이다. 그러나 병원에서 근무하는 의료인의 자격조건, 규정 등이 까다로와지면서 해외에서는 린넨, 폐기물, 수액 이동 등 로봇으로 가능한 부분은 대체하는 추세이다. 본 연구에서는 병원 내에서 발생하는 각종 물품의 배송 업무를 수행할 수 있는 IoT 기반의 병원 물류 로봇으로 다양한 종류의 물건을 원하는 위치까지 안전하게 이동 할 수 있는 기술에 대하여 연구하였다. 병원 내 로봇의 이동은 사람 또는 사물간 충돌을 발생 시킬 수 있기 때문에 충돌을 최소화 해야 한다. 충돌을 최소화하기 위해서는 로봇의 이동 경로에 사물의 유무를 판단하고 사물이 있다면 이동하는 것인지 아닌지를 인지해야 한다. 그래서 얼굴/전신정보 검출과 3D Vision 영상분할 기술을 이용하여 장애물의 상황 정보를 생성하였다. 생성 된 정보를 활용하여 로봇 이동 범위 내 사물과 사람을 고려한 맵을 생성하여 로봇이 안전하고 효율적으로 운행 될 수 있도록 하였다.