DOI QR코드

DOI QR Code

Detection Algorithm of Social Community Structure based on Bluetooth Contact Data

블루투스 접촉 데이터를 이용한 사회관계구조 검출 알고리즘

  • 웬꽁빈 (울산대학교 전기전자컴퓨터공학과) ;
  • 윤석훈 (울산대학교 전기전자컴퓨터공학과)
  • Received : 2017.01.09
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

In this paper, we consider social network analysis that focuses on community detection. Social networks embed community structure characteristics, i.e., a society can be partitioned into many social groups of individuals, with dense intra-group connections and much sparser inter-group connections. Exploring the community structure allows predicting as well as understanding individual's behaviors and interactions between people. In this paper, based on the interaction information extracted from a real-life Bluetooth contacts, we aim to reveal the social groups in a society of mobile carriers. Focusing on estimating the closeness of relationships between network entities through different similarity measurement methods, we introduce the clustering scheme to determine the underlying social structure. To evaluate our community detection method, we present the evaluation mechanism based on the basic properties of friendship.

본 논문에서는 사회관계구조에 초점을 맞춘 사회관계망 분석을 고려한다. 사회관계망은 많은 사회집단으로 구성되어 있으며, 사회관계 구조 특성으로 인하여 같은 사회집단 내의 노드들은 서로 강한 유대관계를 가지고 있으며 다른 사회집단에 속한 노드와는 상대적으로 약한 유대를 가지게 된다. 사회관계망에서의 사회관계구조 검출은 사람들의 행동 및 상호작용의 분석과 예측을 가능하게 한다. 본 논문에서는 사회관계구조와 사회집단을 검출하기 위하여 사람들이 소지하는 스마트기기의 실제 블루투스 접촉 데이터를 이용한다. 네트워크 노드 간 유대를 추정하기 위한 다양한 유사도 측정 방식과 클러스터링을 기반으로 하는 사회관계구조 검출 방안을 제시한다. 제안하는 방안을 검증하기 위하여 교유관계 특성을 이용하는 성능측정방안을 이용한다.

Keywords

References

  1. Y. Zhu, B. Xu, X. Shi and Y. Wang, "A survey of social-based routing in delay tolerant networks: Positive and negative social effects," IEEE Communications Surveys & Tutorials, Vol. 14, no. 3, pp. 1-15, 2012. DOI : https://doi.org/10.1109/SURV.2012.032612.00004
  2. T. Minami, K. Baba, "An Attempt to Find Potential Group of Patrons from Library's Loan Records," International Journal of Internet, Broadcasting and Communication, Vol. 6, no. 1, pp. 5-8, Feb. 2014. DOI : https://doi.org/10.7236/IJIBC.2014.6.1.5
  3. D. Hwang, M.Y. Paek, "Differentiated impacts of SNSs on Participatory Social Capital in Korea," International Journal of Internet, Broadcasting and Communication, Vol. 8, no. 3, pp. 1-11, Aug. 2016. DOI : https://doi.org/10.7236/IJIBC.2016.8.3.1
  4. N. Eagle, A. Pentland, and D. Lazer, "Inferring friendship network structure by using mobile phone data," Proc. Natl. Acad. Sci. USA, Vol. 106, no. 36, pp. 15274-15278, Sep. 2009. DOI : https://doi.org/10.1073/pnas.0900282106
  5. M. E. J. Newman, "Modularity and community structure in networks," Proc. Natl. Acad. Sci. USA, Vol. 103, no. 23, pp. 8577-8582, 2006. DOI : https://doi.org/10.7236/JIIBC.2005.5.2.56
  6. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, "Fast unfolding of community hierarchies in large networks," J. Stat. Mech., Vol. 008, no. 10, P10008, 2008. DOI : https://doi.org/10.1088/1742-5468/2008/10/ P10008
  7. N. Eagle, A. Pentland, "Eigenbehaviors: Identifying structure in routine," Behavioral Ecology and Sociobiology, Vol. 63, pp. 1057-1066, Sep. 2009. DOI : https://doi.org/10.1007/s00265-009-0739-0
  8. E. Bulut and B. Szymanski, "Exploiting friendship relations for efficient routing in delay tolerant mobile social networks," IEEE Trans. Parallel Distrib. Syst, Vol. 23, no. 12, pp. 2254-2265, 2012. DOI : https://doi.org/10.1109/TPDS.2012.83
  9. J.-P. Onnela et al., "Structure and tie strengths in mobile communication networks," Proc. Natl. Acad. Sci. USA, Vol. 104, no. 18, pp. 7332-7336, 2007. DOI : https://doi.org/10.1073/pnas.0610245104
  10. N. Eagle, A. Pentland, "Reality mining: sensing complex social systems," Journal Personal and Ubiquitous Computing, Vol. 10, issue 4, pp. 255-268, May. 2006. DOI : https://doi.org/10.1007/s00779-005-0046-3
  11. M. Turk and A. Pentland, "Eigenfaces for Recognition," J. Cognitive Neuroscience, Vol. 3, no. 1, pp. 71-86, 1991. DOI : https://doi.org/10.1162/jocn.1991.3.1.71
  12. D. R. Cox, P. A. W. Lewis, The Statistical Analysis of Series of Events, Chapman and Hall, London, 1966.
  13. U. von Luxburg, "A tutorial on spectral clustering," Technical Report 149, Max Planck Institute for Biological Cybernetics, Aug. 2006.
  14. Ng. Andrew, M. Jordan, and Y. Weiss, "On spectral clustering: Analysis and an algorithm," Advances in Neural Information Processing Systems, Vol. 14, MIT Press, pp. 849-856, 2002.