DOI QR코드

DOI QR Code

High Temperature Oxidation Behavior of Fe-14Cr Ferritic Oxide Dispersion Strengthened Steels Manufactured by Mechanical Alloying Process

기계적 합금화 공정으로 제조된 Fe-14Cr Ferritic 산화물 분산 강화(ODS) 합금 강의 고온 산화 거동

  • Received : 2017.02.08
  • Accepted : 2017.03.06
  • Published : 2017.04.28

Abstract

This study investigates the oxidation properties of Fe-14Cr ferritic oxide-dispersion-strengthened (ODS) steel at various high temperatures (900, 1000, and $1100^{\circ}C$ for 24 h). The initial microstructure shows that no clear structural change occurs even under high-temperature heat treatment, and the average measured grain size is 0.4 and $1.1{\mu}m$ for the as-fabricated and heat-treated specimens, respectively. Y-Ti-O nanoclusters 10-50 nm in size are observed. High-temperature oxidation results show that the weight increases by 0.27 and $0.29mg/cm^2$ for the as-fabricated and heat-treated ($900^{\circ}C$) specimens, and by 0.47 and $0.50mg/cm^2$ for the as-fabricated and heat-treated ($1000^{\circ}C$) specimens, respectively. Further, after 24 h oxidation tests, the weight increases by 56.50 and $100.60mg/cm^2$ for the as-fabricated and heat-treated ($1100^{\circ}C$) specimens, respectively; the latter increase is approximately 100 times higher than that at $1000^{\circ}C$. Observation of the surface after the oxidation test shows that $Cr_2O_3$ is the main oxide on a specimen tested at $1000^{\circ}C$, whereas $Fe_2O_3$ and $Fe_3O_4$ phases also form on a specimen tested at $1100^{\circ}C$, where the weight increases rapidly. The high-temperature oxidation behavior of Fe-14Cr ODS steel is confirmed to be dominated by changes in the $Cr_2O_3$ layer and generation of Fe-based oxides through evaporation.

Keywords

References

  1. M. K. Miller, E. A. Kenik, K. F. Russell, L. Heatherly, D. T. Hoelzer and P. J. Maziasz: Mater. Sci. Eng. A, 353 (2003) 140. https://doi.org/10.1016/S0921-5093(02)00680-9
  2. M. J. Alinger, G. R. Odette and D. T. Hoelzer: Acta Mater., 57 (2009) 392. https://doi.org/10.1016/j.actamat.2008.09.025
  3. A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu and M. W. Chen: Nat. Mater., 10 (2011) 922. https://doi.org/10.1038/nmat3150
  4. J. H. Kim, T. S. Byun, D. T. Hoelzer, C. H. Park, J. T. Yeom and J. K. Hong: Mater. Sci. Eng. A, 559 (2013) 111. https://doi.org/10.1016/j.msea.2012.08.041
  5. J. H. Gwon, J. H. Kim and K. A. Lee: J. Nucl. Mater., 459 (2015) 205. https://doi.org/10.1016/j.jnucmat.2015.01.032
  6. C. S. Tiwary, A. Verma, S. Kashyp, K. Biswas and K. Chattopadhyay: Metall. Mater. Trans. A, 44 (2013) 1917. https://doi.org/10.1007/s11661-012-1508-7
  7. W. J. Quadakkers: Oxidation of ODS alloys, J. Phys., IV France 3 (1993) 177. https://doi.org/10.1051/jp4:1993424
  8. B. A. Pint and I. G. Wright: J. Nucl. Mater., 307-311 (2002) 763. https://doi.org/10.1016/S0022-3115(02)01223-0
  9. T. Kaito, T. Narita, S. Ukai and Y. Matsuda: J. Nucl. Mater., 329-333 (2004) 1388. https://doi.org/10.1016/j.jnucmat.2004.04.203
  10. H. K. D. H. Bhadeshia: Mater. Sci. Eng. A, 223 (1997) 64. https://doi.org/10.1016/S0921-5093(96)10507-4
  11. M. Dade, J. Malaplate, J. Garnier, F. D. Geuser, N. Lochet and A. Deschamps: J. Nucl. Mater., 472 (2016) 143. https://doi.org/10.1016/j.jnucmat.2016.01.019
  12. T. Liu, L. Wang, C. Wang and H. Shen: Corros. Sci., 104 (2016) 17. https://doi.org/10.1016/j.corsci.2015.11.025
  13. S. Y. Cheng, S. L. Kuan and W. T. Tsai: Corros. Sci., 48 (2006) 634. https://doi.org/10.1016/j.corsci.2005.02.014

Cited by

  1. Microstructure and Wear Properties of Oxide Dispersion Strengthened Steel Powder Added Steel-Based Composite Material for Automotive Part vol.25, pp.1, 2018, https://doi.org/10.4150/KPMI.2018.25.1.36