DOI QR코드

DOI QR Code

Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports

루테늄 산화물 나노 섬유 지지체에 담지된 고 분산성 촉매의 전기화학적 거동

  • An, Geon-Hyoung (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
  • 안건형 (서울과학기술대학교 의공학 바이오소재 융합 협동과정 신소재공학 프로그램) ;
  • 안효진 (서울과학기술대학교 의공학 바이오소재 융합 협동과정 신소재공학 프로그램)
  • Received : 2017.03.30
  • Accepted : 2017.04.17
  • Published : 2017.04.28

Abstract

Well-dispersed platinum catalysts on ruthenium oxide nanofiber supports are fabricated using electrospinning, post-calcination, and reduction methods. To obtain the well-dispersed platinum catalysts, the surface of the nanofiber supports is modified using post-calcination. The structures, morphologies, crystal structures, chemical bonding energies, and electrochemical performance of the catalysts are investigated. The optimized catalysts show well-dispersed platinum nanoparticles (1-2 nm) on the nanofiber supports as well as a uniform network structure. In particular, the well-dispersed platinum catalysts on the ruthenium oxide nanofiber supports display excellent catalytic activity for oxygen reduction reactions with a half-wave potential ($E_{1/2}$) of 0.57 V and outstanding long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 19 mV. The enhanced electrochemical performance for oxygen reduction reactions results from the well-dispersed platinum catalysts and unique nanofiber supports.

Keywords

References

  1. M. Lefevre, E. Proietti, F. Jaouen and J. P. Dodelet: Science, 324 (2009) 71. https://doi.org/10.1126/science.1170051
  2. G. H. An, E. H. Lee and H. J. Ahn: J. Korean Powder Metall. Inst., 23 (2016) 420.
  3. G. H. An and H. J. Ahn: Kor. J. Mater. Res., 22 (2012) 421. https://doi.org/10.3740/MRSK.2012.22.8.421
  4. M. K. Jeon, C. H. Lee, G. I. Park and K. H. Kang: J. Power Sources, 216 (2012) 400. https://doi.org/10.1016/j.jpowsour.2012.05.107
  5. K. Gong, F. Du, Z. Xia, M. Durstock and L. Dai: Science, 323 (2009) 760. https://doi.org/10.1126/science.1168049
  6. G. H. An and H. J. Ahn: J. Electroanal. Chem., 707 (2013) 74. https://doi.org/10.1016/j.jelechem.2013.08.024
  7. G. H. An, E. H. Lee and H. J. Ahn: J. Alloys Compd., 682 (2016) 746. https://doi.org/10.1016/j.jallcom.2016.05.033
  8. G. H. An, E. H. Lee and H. J. Ahn: Phys. Chem. Chem. Phys., 18 (2016) 14859. https://doi.org/10.1039/C6CP01964A
  9. G. H. An and H. J. Ahn: Kor. J. Mater. Res., 23 (2013) 143. https://doi.org/10.3740/MRSK.2013.23.2.143
  10. D. Y. Sin G. H. An and H. J. Ahn: J. Korean Powder Metall. Inst., 22 (2015) 350. https://doi.org/10.4150/KPMI.2015.22.5.350
  11. B. R. Koo, G. H. An and H. J. Ahn: J. Korean Powder Metall. Inst., 21 (2014) 108. https://doi.org/10.4150/KPMI.2014.21.2.108
  12. D. Y. Sin, G. H. An and H. J. Ahn: Kor. J. Mater. Res., 25 (2015) 113. https://doi.org/10.3740/MRSK.2015.25.3.113
  13. H. R. An, G. H. An and H. J. Ahn: Kor. J. Mater. Res., 26 (2016) 250. https://doi.org/10.3740/MRSK.2016.26.5.250
  14. G. H. An and H. J. Ahn: J. Electroanal. Chem., 707 (2013) 74. https://doi.org/10.1016/j.jelechem.2013.08.024
  15. G. H. An and H. J. Ahn: J. Electroanal. Chem., 744 (2015) 32. https://doi.org/10.1016/j.jelechem.2015.03.009

Cited by

  1. Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction vol.28, pp.3, 2018, https://doi.org/10.3740/MRSK.2018.28.3.182