DOI QR코드

DOI QR Code

Experimental Investigation of Physical Mechanism for Asymmetrical Degradation in Amorphous InGaZnO Thin-film Transistors under Simultaneous Gate and Drain Bias Stresses

  • Jeong, Chan-Yong (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Hee-Joong (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lee, Jeong-Hwan (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kwon, Hyuck-In (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2016.08.24
  • Accepted : 2016.09.26
  • Published : 2017.04.30

Abstract

We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, Nov. 2004. https://doi.org/10.1038/nature03090
  2. T. Arai, "Oxide-TFT technologies for next-generation AMOLED displays," J. Soc. Info. Display, vol. 20, pp. 156-161, Mar. 2012. https://doi.org/10.1889/JSID20.3.156
  3. S. Oh, J. H. Baeck, H. S. Shin, J. U. Bae, K.-S. Park, and I. B. Kang, "Comparison of top-gate and bottom-gate amorphous InGaZnO thin-film transistors with the same $SiO_2/a-InGaZnO/SiO_2$ stack," IEEE Electron Device Lett., vol. 35, pp. 1037-1039, Oct. 2014. https://doi.org/10.1109/LED.2014.2351492
  4. X. Li, D. Geng, M. Mativenga, and J. Jang, "High-speed dual-gate a-IGZO TFT-based circuits with top-gate offset structure," IEEE Electron Device Lett., vol. 35, pp. 461-463, Apr. 2014. https://doi.org/10.1109/LED.2014.2305665
  5. J. P. Lee, J. Y. Hwang, and B. S. Bae, "Pixel Circuits with Threshold Voltage Compensation using a-IGZO TFT for AMOLED," J. Semicond. Tech. Sci., vol. 14, pp.594-600, Oct., 2014. https://doi.org/10.5573/JSTS.2014.14.5.594
  6. C-Y. Jeong, D. Lee, S. -H. Song, J. I. Kim, J. -H. Lee, and H. -I. Kwon, "A Study on the degradation mechanism of InGaZnO thin-film transistors under simultaneous gate and drain bias stresses based on the electronic trap characterization," Semicond. Sci. Technol., vol. 29, pp.045023-1-045023-6, Apr., 2014. https://doi.org/10.1088/0268-1242/29/4/045023
  7. D. Lee, C-Y. Jeong, S. -H. Song, J. X. -Shi, J. I. Kim, J. -H. Lee, and H. -I. Kwon, "Asymmetrical degradation behaviors in amorphous InGaZnO thin-film transistors under various gate and drain bias stresses," J. Vac. Sci. Technol B, vol. 33, pp.011202-1-011202-8, Jan./Feb., 2015. https://doi.org/10.1116/1.4903527
  8. H. Bae, S. Kim, M. Bae, J. S. Shin, D. Kong, H. Jung, J. Jang, J. Lee, D. H. Kim, and D. M. Kim, "Extraction of Separated Source and Drain Resistances in Amorphous Indium-Gallium-Zinc Oxide TFTs Through C-V Characterization," IEEE Electron Device Lett., vol. 32, pp. 761-763, Jun. 2011. https://doi.org/10.1109/LED.2011.2127438
  9. A. Valletta, G. Fortunato, L. Mariucci, P. Barquinha, R. Martins, and E. Fortunato, "Contact Effects in Amorphous InGaZnO Thin-Film Transistors," J. Display Technol., vol.10, pp. 956-961, Nov. 2014. https://doi.org/10.1109/JDT.2014.2328376
  10. C. Zhao, T. -C. Fung, and J. Kanicki, "Half-Corbino short-channel amorphous In-Ga-Zn-O thin-film transistors with a-$SiO_X$ or a-$SiO_X/a-SiN_X$ passivation layers," Solid-State Electron, vol. 120, pp.25-31, Jun. 2016. https://doi.org/10.1016/j.sse.2016.03.003
  11. B. -Y. Tsui, C. -P. Lu, and H. -H. Liu, "Method for Extracting Gate-Voltage-Dependent Source Injection Resistance of Modified Schottky Barrier (MSB) MOSFETs," IEEE Electron Device Lett., vol. 29, pp.1053-1055, Sep. 2008. https://doi.org/10.1109/LED.2008.2001478