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Abstract—The most prominent challenge for 

MOSFET scaling is to reduce power consumption; 

however, the supply voltage (VDD) cannot be scaled 

down because of the carrier injection mechanism. To 

overcome this limit, a new type of field-effect 

transistor using positive feedback as a carrier 

injection mechanism (FBFET) has been proposed. In 

this study we have investigated the electrical 

characteristics of a Si1-xGex FBFET with one gate and 

one-sided Si3N4 spacer using TCAD simulations. To 

reduce the drain bias dependency, Si1-xGex was 

introduced as a low-bandgap material, and the 

minimum subthreshold swing was obtained as 2.87 

mV/dec. This result suggests that a Si1-xGex FBFET is 

a promising candidate for future low-power devices. 

 

Index Terms—Low power devices, steep subthreshold 

slope, positive feedback, field-effect transistor  

I. INTRODUCTION 

In the semiconductor industries, power consumption 

has become a major issue as metal-oxide-semiconductor 

field-effect transistor (MOSFET) has been scaled down 

for high density and speed. Because of its carrier 

injection mechanism, which is controlled by the thermal 

voltage kBT/q, MOSFETs have subthreshold swing (SS) 

limit 60 mV/dec at room temperature (T = 300K), so the 

supply voltage (VDD) cannot be scaled down along with 

its physical length [1, 2]. To overcome this theoretical 

limit of MOSFETs, steep swing devices, such as tunnel 

field-effect transistors (TFETs) [3-13] and impact-

ionization MOS (i-MOSs) [14-16], have attracted many 

researchers’ interests; however, TFETs suffer from the 

low on-current level as a main problem due to its high 

tunneling resistance, and i-MOSs require high supply 

voltage to induce impact ionizations and has current 

control issues. 

Recently, Padillda et al. (2008) reported a new type of 

transistor called feedback field-effect transistor (FBFET) 

with steep SS and high on-current level using positive 

feedback; however, it had two sidewall spacers on both 

sides of the gate, in which it was necessary to trap 

electrons and holes for positive feedback operation 

respectively [17, 18]. Jeon et al. (2015) also reported a 

FBFET composed of two independent gates; however, 

the device operation was inefficient because it was 

required to keep the appropriate voltage bias to the other 

gate for positive feedback operation [19]. Also, it was 

found to be difficult to fabricate the structure with two 

gates.  

In this paper, we propose a newly designed structure 

of FBFETs, which consists of one switching gate and 

one-sided nitride spacer. Compared with other FBFETs, 

it only needs one type of carriers to be trapped; holes for 

n-type operation and electrons for p-type operation. In 

addition, no other gate bias is needed to be kept for 

positive feedback operation. Moreover, we introduce Si1-

xGex as a device material to reduce the on-current 

dependency on the drain bias.  

II. DEVICE STRUCTURE 

The device structure used in this work is shown in Fig. 
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1. The device is a double-gated structure with one-sided 

nitride spacer and asymmetrically doped n+ source and p+ 

drain regions. The doping concentration of source and 

drain regions is 1021 cm-3. The gate and nitride spacer are 

formed with their length 500 nm on 3 nm SiO2 gate 

dielectric, and the spacer is formed near p+ doped drain 

region with trapped holes to induce positive feedback 

loop. 

The fabrication method of this structure can be similar 

with previous reported studies except an implantation 

scheme [17, 18]. The source side underlap can be 

eliminated by implanting the source side before the 

sidewall spacer formation. The advantage of this structure 

is that the programming bias scheme can become simple 

because it only needs to trap one type of carriers for the 

feedback operation. In order to estimate the accurate 

electrical characteristics of the proposed device, 

SentaurusTM TCAD simulator of Synopsys Inc. (ver. K-

2015.06-SP1) was used, and the detailed parameters of 

simulated device are summarized in Table 1.  

III. DEVICE OPERATION 

The device operates as a simple n+-i-p+ diode without 

trapped charge in the sidewall spacer. This means that 

the drain current is controlled not by the gate voltage but 

by the drain voltage. However, the gate has its 

controllability on the drain current by using positive 

feedback mechanism if there are trapped charges in the 

sidewall spacer. 

The detailed operation mechanism of the FBFET in 

this study is illustrated in Fig. 2. The n+ source is 

grounded, and the positive voltage is applied to the p+ 

drain. When there are sufficient trapped holes in the 

spacer, the channel potential below the spacer is 

increased, and the potential barrier for electron 

accumulation is formed as shown in Fig. 2(a). Electrons 

are injected from the source region to the channel as the 

gate voltage increases and accumulated in the potential 

well as shown in Fig. 2(b). Electrons cannot flow to the 

drain region at this time due to the increased potential 

barrier formed by positive trapped charges in the 

 

Fig. 1. The schematic view of the proposed positive feedback 

transistor. The nitride spacer contains sufficient holes to cause 

positive feedback loop. 

 

Table 1. Parameters of simulated device 

Gate length 500 nm 

Spacer length 500 nm 

Body thickness 150 nm 

Gate oxide thickness 3 nm 

Source doping conc. 1021 cm-3 

Drain doping conc. 1021 cm-3 

 

 

(a) 
 

 

(b) 
 

 

(c) 
 

 

(d) 

Fig. 2. Illustration of the positive feedback FETs operation (a) 

The initial state: potential barrier formed by the holes in the 

sidewall spacer, (b) The electron injection, (c) the hole injection 

occurs in turn, which creates positive feedback loop, (d) The 

device operates like a simple n+-i-p+ diode after positive 

feedback loop. 
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sidewall spacer. The lowered potential barrier by 

accumulated electrons helps holes flow from the drain 

region into the channel. Similarly, the injected holes are 

accumulated in the channel below the gate; therefore, the 

potential barrier for electron injection from the source 

side is lowered as shown in Fig. 2(c). Once this positive 

feedback loop lowers potential barriers at both source 

and drain sides enough to make every junction between 

the source and the drain forward-biased, the device 

abruptly changes its state from off- to on-state, resulting 

in the ultra-steep subthreshold slope as shown in Fig. 

2(d). 

IV. SIMULATION RESULTS 

1. Electrical Characteristics of Si FBFET 

 

Fig. 3 shows the transfer characteristics of the FBFET 

with fixed trapped charges in the sidewall spacer and drain-

source voltage (VDS) varying from 0.4 V to 1 V. For the 

initial conditioning process of the sidewall spacer, 

programming pulses (VG = VS = -9 V, VD = +9 V, pulse 

width = 1 µs) were applied. Abrupt switching characteristics 

were seen for VDS > 0.4 V, and the minimum 

subthreshold swing (SSmin) was 3.79 mV/dec with the 

high on-off ratio of 109 when VDS = 1 V. In addition, the 

drain current almost unchanged in spite of increasing 

gate-source voltage (VGS) and exponentially decreased 

when VDS linearly decreased. This is because the gate 

voltage loses its controllability on the drain current after 

the device goes into the on-state. As soon as the positive 

feedback loop turns on the device, it just operates like a 

forward biased n+-i-p+ diode. As illustrated in Fig. 4(a), 

the output characteristic of FBFET at VGS > threshold 

voltage (VT) became quite similar to the current 

characteristic of an n+-i-p+ diode. From the Shockley 

diode equation, diode current as a function of the applied 

voltage (Vapp) can be written as 
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It can be seen that the on-current is exponentially 

proportional to the applied voltage (Vapp), which 

corresponds to VDS in the device [20].  

Moreover, when VGS < VT, the output characteristics 
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Fig. 3. Transfer characteristics of Si FBFET with VDS from 

0.4 V to 1.0 V. The minimum subthreshold swing (SSmin) is 

3.79 mV/dec. 
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Fig. 4. Output characteristics of Si FBFET (a) at VGS > VT, (b) 

VGS < VT. 
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showed steep increasing of the drain current for forward 

sweep of VDS as shown in Fig. 4(b). The increase of the 

drain voltage lowers the hole barrier between the channel 

and drain region, which gives rise to the positive 

feedback loop. In reverse sweep, however, it was found 

that the drain current was decreased without abrupt 

change. This is because, after the positive feedback loop 

successfully turns on the device, the channel potential 

becomes flat as illustrated in Fig. 2(d) and operates like 

an n+-i-p+ diode. This hysteresis gives evidence for the 

positive feedback operation of the device, but it needs to 

be eliminated for the logic application of FBFETs. 

 

2. Electrical Characteristics of Si1-xGex FBFET 

 

Even though the subthreshold slope of FBFETs is 

much steeper than that of MOSFETs, this may not be 

suitable for low-voltage operation because of the 

exponential drop of the on-current along with the 

reduction of VDS. Furthermore, the device does not 

properly operate at low drain voltage (VDS < 0.6 V). This 

is because the injected electrons and holes from the 

source/drain regions can hardly contribute to the drain 

current without high drain voltage due to the high 

potential barriers. In order to achieve high on-current 

even at the low drain voltage, it is important to reduce 

the built-in potential between the channel and 

source/drain regions. For this purpose, Si1-xGex appears 

to be a good substitute for Si because its bandgap is 

narrower than that of Si and also has high CMOS 

compatibility.  

The transfer characteristics of the device with Si1-xGex 

are shown in Fig. 5. For fixed trapped charge and VDS = 

1 V, the device showed steep switching behavior 

regardless of Ge mole fraction; however, there were 

some remarkable changes as Ge mole fraction increasing 

from 0 to 0.3. Firstly, VT was shifted to the negative. 

Owing to narrower bandgap material, enhancing the 

carrier injection into the channel, the FBFETs with Si1-

xGex channel showed lower VT compared to the Si 

FBFET. Additionally, the off-current level remained at 

the same level because the negative gate bias induced 

high energy barrier blocking the carrier flowing. On the 

other hand, there was an improvement of the on-current 

level in the exponential manner. The energy bandgap 

change of Si1-xGex follows as 

 , ,
0.74 .

bandgap SiGe bandgap Si mole
E E x= −      (3) 

 

Also, the intrinsic carrier concentration can be written 

as, 
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From the Eqs. (1-4), it is turned out that the on-current 

level exponentially increases as Ge mole fraction 

increases, so higher on-off ratio can be obtained 

compared to the Si FBFET at the same VDS [21].  

Fig. 6 shows the transfer characteristics of the device 

with Si0.7Ge0.3 channel. As can be seen from Fig. 3, Si 

FBFET cannot properly operate for the low drain voltage 

(VDS < 0.6 V), whereas on- and off-state can be 

distinguished even at the low drain voltage (VDS = 0.4 V) 

for the case of Si0.7Ge0.3 device. There was also a little 

-6 -4 -2 0 2
10
-17

10
-14

10
-11

10
-8

10
-5

10
-2

 Si

 Si
0.9
Ge

0.1

 Si
0.8
Ge

0.2

 Si
0.7
Ge

0.3

D
r
a
in
 C
u
r
r
e
n
t 
[A
/µ
m
]

Gate Voltage [V]

high Ge mole fraction

VDS = 1 V

 

Fig. 5. Transfer characteristics of FBFETs with Ge mole 

fraction varying from 0 to 0.3. 
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Fig. 6. Transfer characteristics of FBFETs using Si0.7Ge0.7 with 

VDS from 0.4 V to 1.0V. The minimum subthreshold swing 

(SSmin) is 2.87 mV/dec. 
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improvement in the minimum subthreshold swing from 

3.79 mV/dec of Si FBFET to 2.87 mV/dec of Si0.7Ge0.3 

FBFET.  

V. CONCLUSIONS 

In this paper, we have proposed a new design of 

positive feedback field-effect transistor (FBFET), which 

has one gate and one-sided nitride spacer. The device 

structure has its advantages of the fact that it only needs 

to trap one type of carriers in the sidewall spacer, and no 

additional bias is required for positive feedback operation. 

The operation mechanism of FBFETs was demonstrated, 

and the electrical characteristics were simulated. The 

transfer curve showed the minimum 3.79 mV/dec 

subthreshold swing, which overcome the theoretical 

limits of MOSFETs, 60 mV/dec. However, the high VDS 

was required for the FBFETs with Si due to the high 

potential barriers between the source and the drain. In 

order to mitigate this problem, the FBFET with Si1-xGex 

channel was also simulated. Abrupt switching behavior 

was found with 2.87 mV/dec subthreshold swing, and the 

device operated even at the low VDS conditions. Si1-xGex 

FBFETs can therefore be a promising candidate for the 

future low-power devices.  
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