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Logistic regression is a regression model where the dependent variable is categorical and 
corresponding independent variables can be categorical or continuous. This article covers 
the case of a binary dependent variable such as an event occurring coded 1 = ‘event’ and 0 = 
‘no event’. Frequent outcomes are pass/fail, win/lose, disease/no disease, etc. The logistic 
regression model estimates the probability that an event occurs versus the probability that 
the event does not occur.

An example: score and pass data
Let's say that an institution performed an assessment procedure to determine pass and 
fail of the participants considering exam scores, interview result, and reputation among 
colleagues. Table 1 shows a data with 2 variables, exam scores and pass state (1 = pass, 0 = 
fail). We can notice that there is a trend that persons with lower scores are more likely to fail, 
while persons with higher scores tend to pass. When we plot the data as Figure 1A, we can 
see persons with value 1 (pass) have scores that shift to the right side, while persons with 
value 0 (fail) have those that shift to the left side. Persons with same score may not have the 
same outcome (e.g., cases of score = 799) because the assessment procedure comprises other 
factors. At least we can postulate that the probability of pass may be higher if the score is 
higher. What is the best-fit line for this data? A usual straight regression line ranging from 
minus infinity to infinity does not make sense for this case. Instead of ordinal regression 
the logistic regression can fit the probability more adequately. In Figure 1B, the probability 
estimated by logistic regression is presented. The estimated probability by the logistic 
regression model (red dot and line) seems reasonable because it reflects the observed reality 
that the probability of pass decreases close to zero with very low scores, while the probability 
increases close to one with very high scores.
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Table 1. Scores of applicants who passed the final assessments
Score 755 755 763 781 783 788 792 793 798 799 799 802 813 824 845
Pass 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1
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Review of probability, odds, and odds ratio
From the previous sections about risk, odds, and odds ratio, they were defined as following 
formulas:

Let's consider an example of flipping of fair coins vs. loaded coins.

Odds ratio is important in interpreting in logistic regression because it represents how 
much the odds change with 1 unit increase in the predictor variables while keeping all other 
variables constant.

Logistic regression

1. Logit link function
Logistic regression uses logit link function to estimate unknown probability of outcome (p) for 
a linear combination of predictor variables. The original probability ranging from zero to one 
cannot match with linear combination of predictor variables ranging minus infinity to infinity [1].

where logex = ln (x) and e = Euler's number, 2.71828.

343https://rde.ac https://doi.org/10.5395/rde.2017.42.4.342

Probability or risk (p) = ������ �� ������
������ �� ��� ������������

 

  
Odds = � (�����)

� (�������� )
= �

���
 

  
Odds ratio = �����

�����
=

��
����

��
����

 

 

  

A

0
740 760 780 800 820 840 860

1
Scatterplot of pass and score B

0
740 760 780 800 820 840 860

1
Scatterplot of score and probability of pass

Pass
P

Figure 1. Scatterplot of pass (1 = pass, 0 = fail) and score: (A) pass and score, and (B) estimated probability (P) of pass added.
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Logit link function accommodate p ranging from zero to one. The logit link function 
reconciles the incongruity by changing the range of dependent variable, p, into minus infinity 
to infinity. As seen in Table 2, final logit (p) values cover from minus values to plus values.

2. Property of logit and inverse logit
Shown in Figure 2A, logit function has an s-shaped curve. Logit (p) is undefined at p = 0 and 
p = 1. When p approaches close to zero, the value of logit (p) goes toward minus infinity and 
when p get larger close to one, it goes toward infinity. We can notice that the logit (p) has a 
value of zero at p = 0.5.

Figure 2B shows inverse logit graph. Inverse logit returns the probability of the event ranging 
from zero to one. Figure 1B and Figure 2B show similar shape because both represent 
estimated probability. The induced inverse logit formula is as following: 

where α = some number.

3. Estimation of logistic regression equation
Simple logistic regression is expressed as logit (p) and linear combination of predictor 
variables as below.
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Table 2. Logit transformation from probability (p)
P 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
1−p 0.99 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01
odds 0.01 0.11 0.25 0.43 0.67 1.00 1.50 2.33 4.00 9.00 99.00
Logit (p) = ln (odds) −4.60 −2.20 −1.39 −0.85 −0.41 0.00 0.41 0.85 1.39 2.20 4.60
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Figure 2. Probability and logit transformation: (A) natural log of adds ratio (logit [p]), (B) inverse logit (p).
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Using a fictitious data based on the example above logistic regression was performed and 
the output was provided (pages 348–349). The observations (n = 15) are multiplied by 100 to 
provide high power to get significant estimates artificially. The dependent variable was the 
binary variable pass and score was the predictor variable. The SPSS (IBM Corp., Armonk, NY, 
USA) output of (e) below gives coefficients as following.

The estimated logistic equation is:

where p = probability of ‘pass’.

Here represents odds ratio which means the amount of change in odds with 1 unit increase 
in the predictor variable. The odds ratio, exp (β1) = e0.093115 = 1.097588. Therefore, as the score 
increases by 1 point, the odds of pass was estimated to increase by 9.8%. The 95% confidence 
interval of odds ratio was [1.086, 1.109] which does not include a value one. Odds ratio value 
of one means that 1 unit increase in the predictor variable does not make any difference in 
odds. Therefore, to get statistical significance, it is important to confirm that 95% confidence 
interval of odds ratio does not include one.

1) Estimated probability
After some algebra, inverse logit gives us the estimated probability by the predictor variable 
as follows:

To get the probability of pass at score 781, we can use the estimated probability function. 
Also, if the score increases by one point to 782 then the estimated probability can be 
calculated as shown in Table 3. According to the results for the score 781, estimated 
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<SPSS output>

β0 = −73.578140 (p<0.001), β1 = 0.093115 (p<0.001)

Exp (β1) = 1.098, 95% confidence interval of Exp (β1) = [1.086, 1.109]

Table 3. Estimated probability and odds ratio based on logistic regression model
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probability of pass in the assessment is 0.30 or 30%. Also, the odds ratio is obtained as 1.098, 
which is the same value with exp (β1) from the SPSS output, representing the increase of odds 
of 9.8% related to a 1 point increase of the score.

Estimated probability for other score values are shown in the SPSS output (f ) below under 
‘PRE_1’. Using this we can calculate odds and odds ratio between 2 specific scores. For example, 
suppose my present score is 781 and I'd like to know how much increase in odds if I raise my 
score by 11 points and get 792. Then the odds ratio can be obtained easily. The calculation ends 
up to an increase of 179% in odds when I raise up my score by 11 points (Table 4).
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odds at 792
odds at 781

=
1.18
0.43

= 2.79 

 

 

 

 

Table 4. Scores, estimated probabilities, and odds ratios based on logistic regression model
Score 755 755 763 781 783 788 792 793 798 799 799 802 813 824 845
P 0.04 0.04 0.07 0.30 0.34 0.45 0.54 0.57 0.67 0.69 0.69 0.75 0.89 0.96 0.99
Odds 0.04 0.04 0.08 0.43 0.51 0.82 1.18 1.30 2.07 2.27 2.27 3.01 8.37 23.31 164.84
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Appendix 1. Procedure of logistic regression using IBM SPSS.

The procedure of logistic regression using IBM SPSS Statistics for Windows Version 23.0 (IBM Corp.) is as follows.
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(A) Data (weighted by freq*) (B) Analyze-Regression-Binary Logistic

(C) Options (D) Save

(E) Test of model (F) Model fit
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*In this fictitious data, the ‘freq’ variable was used to multiply the number of observations to get sufficient power.
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(G) Coefficients

(H) Predicted probability
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