DOI QR코드

DOI QR Code

In Situ Heat Treatment of ZnO:Al Thin Films Fabricated by RF Magnetron Sputtering

  • Kim, Deok Kyu (Advanced LED Technology Development Project, Samsung Electronics Co. Ltd.)
  • Received : 2017.02.26
  • Accepted : 2017.03.26
  • Published : 2017.05.01

Abstract

ZnO:Al thin films were deposited on glass substrate by RF magnetron sputtering followed by in situ heat treatment in the same chamber. Effects of in situ heat treatment on properties of ZnO:Al thin films were investigated in this study. As heat treatment temperature was increased, crystal quality was improved first and then it was deteriorated, surface roughness was decreased, and sheet resistance was also decreased. The decrease in sheet resistance was caused by increasing carrier concentration due to decreased surface roughness. The decrease in surface roughness resulted in increase of transmittance. Therefore, in situ heat treatment is an effective method for obtaining films with better electrical characteristics.

Keywords

References

  1. X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett., 83, 1875 (2003). [DOI: https://doi.org/10.1063/1.1605805]
  2. J. Muller, B. Rech, J. Springer, and M. Vanecek, Solar Energy, 77, 917 (2004). [DOI: https://doi.org/10.1016/j.solener.2004.03.015]
  3. T. Minami, S. Takata, and T. Kakumu, J. Vac. Sci. Technol. A, 14, 1689 (1996). [DOI: https://doi.org/10.1116/1.580320]
  4. T. Minami, Thin Solid Films, 516, 5822 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.10.063]
  5. N. R. Armstrong, C. Carter, C. Donley, A. Simmonds, P. Lee, and M. Brumbach, Thin Solid Films, 445, 342 (2003). [DOI: https://doi.org/10.1016/j.tsf.2003.08.067]
  6. M. Miyazaki, K. Sato, A. Mitsui, and H. Nishimura, J. Non-Crystalline Solids, 218, 323 (1997). [DOI: https://doi.org/10.1016/S0022-3093(97)00241-X]
  7. A. Mosbah and M. S. Aida, J. Alloys Compd., 515, 149 (2012). [DOI: https://doi.org/10.1016/j.jallcom.2011.11.113]
  8. H. Kumarakuru, D. Cherns, and G. M. Fuge, Surf. Coat. Technol., 205, 5083 (2011). [DOI: https://doi.org/10.1016/j.surfcoat.2011.05.011]
  9. P. Baneerjee, W. J. Lee, K. R. Bae, S. B. Lee, and G. W. Rubloff, J. Appl. Phys., 108, 043504 (2010). [DOI: https://doi.org/10.1063/1.3466987]
  10. S. Y. Kuo, K. C. Liu, F. I Lai, J. F. Yang, W. C. Chen, M. Y. Hsieh, H. I. Lin, and W. T. Lin, Microelectronics Reliability, 50, 730 (2010). [DOI: https://doi.org/10.1016/j.microrel.2010.01.042]
  11. C. H. Tseng, W. H. Wang, H. C. Chang, C. P. Chou, and C. Y. Hsu, Vacuum, 85, 263 (2010). [DOI: https://doi.org/10.1016/j.vacuum.2010.06.006]
  12. A. I. Ali, A. H. Ammar, and A. Abdel Moez, Superlattices Microstruct., 65, 285 (2014). [DOI: https://doi.org/10.1016/j.spmi.2013.11.007]
  13. W. F. Yang, Z. Y. Wu, Z. G. Liu, A. S. Pang, Y. L. Tu, and Z. C. Feng, Thin Solid Films, 519, 31 (2010). [DOI: https://doi.org/10.1016/j.tsf.2010.07.048]
  14. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Reading, Boston, 1978) p. 102.
  15. I. W. Kim, S. J. Doh, C. C. Kim, J. H. Je, J. Tashiro, and M. Yoshimoto, Appl. Surf. Sci., 241, 179 (2005). [DOI: https://doi.org/10.1016/j.apsusc.2004.09.087]
  16. Y. Igasaki and H. Saito, Thin Solid Films, 199, 223 (1991). [DOI: https://doi.org/10.1016/0040-6090(91)90004-H]
  17. B. D. Ahn, S. H. Oh, C. H. Lee, G. H. Kim, H. J. Kim, and S. Y. Lee, J. Cryst. Growth, 309, 128 (2007). [DOI: https://doi.org/10.1016/j.jcrysgro.2007.09.014]
  18. J. H. Oha, K. K. Kim, and T. Y. Seong, Appl. Surf. Sci., 257, 2731 (2011). [DOI: https://doi.org/10.1016/j.apsusc. 2010.10.053]
  19. G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240]