DOI QR코드

DOI QR Code

Characterizations of Thermal Compound Using CuO Particles Grown by Wet Oxidation Method

습식 산화법으로 성장된 산화구리입자를 이용한 방열 컴파운드 제조 및 특성 연구

  • Lee, Dong Woo (Research & Development Institute, Youngyiel Precision Co., Ltd.) ;
  • Um, Chang Hyun (Research & Development Institute, Youngyiel Precision Co., Ltd.) ;
  • Chu, Jae Uk (Research & Development Institute, Youngyiel Precision Co., Ltd.)
  • Received : 2016.05.31
  • Accepted : 2017.03.16
  • Published : 2017.04.27

Abstract

Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu ($0.1{\mu}m$ and $7{\mu}m$) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at $75^{\circ}C$. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from $0.1{\mu}m$ Cu particles increased by 192.5 % and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.

Keywords

References

  1. D. D. L. Chung, J. Mater. Eng. Perform., 10, 56 (2001). https://doi.org/10.1361/105994901770345358
  2. E. Zambolin and D. D. Col, Sol. Energy, 84, 1382 (2010). https://doi.org/10.1016/j.solener.2010.04.020
  3. M. L. S. Fuller, M. Kasrai, G. M. Bancroft, K. Fyfe and K. H. Tan, Tribol. Int., 31, 627 (1998). https://doi.org/10.1016/S0301-679X(98)00084-X
  4. W. K. Loh, A. D. Crocombe, M. M. A. Wahab and I. A. Ashcroft, Int. J. Adhes. Adhes., 25, 1 (2005). https://doi.org/10.1016/j.ijadhadh.2004.02.002
  5. J. P. Gwinn and R. L. Webb, Microelectron. J., 34, 215 (2003). https://doi.org/10.1016/S0026-2692(02)00191-X
  6. R. Prasher, Proc. IEEE, 94, 1571 (2006). https://doi.org/10.1109/JPROC.2006.879796
  7. G.-W. Lee, M. Park, J. Kim, J. I. Lee and H. G. Yoon Compos. Appl. Sci. Manuf., 37, 727 (2006). https://doi.org/10.1016/j.compositesa.2005.07.006
  8. A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. E. Itkis and R. C. Haddon, Adv. Mater., 20, 4740 (2008). https://doi.org/10.1002/adma.200800401
  9. W. Yu, J. Zhao, M. Wang, Y. Hu, L. Chen and H. Xie, Nanoscale Res. Lett., 10, 113 (2015). https://doi.org/10.1186/s11671-015-0822-6
  10. M. S. Liu, M. C. Lin and C. C. Wang, Nanoscale Res. Lett., 6, 297 (2011). https://doi.org/10.1186/1556-276X-6-297
  11. M. N. Rashin and J. Hemalatha, J. Mol. Liq., 197, 257 (2014). https://doi.org/10.1016/j.molliq.2014.05.024
  12. M. S. Liu, M. C. Lin, I. T. Huang and C. C. Wang, Chem. Eng. Technol., 29, 72 (2006). https://doi.org/10.1002/ceat.200500184
  13. S. U. S. Choi and J. A. Eastman, in ASME International Mechanical Engineering Congress & Exposition (San Francisco, CA, November 1995).
  14. K. Ahn, K. Kim, J. Kim and W. Cho, Polym (in Korea)., 39, 961 (2015). https://doi.org/10.7317/pk.2015.39.6.961
  15. C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara and D. Golberg, Adv. Funct. Mater., 19, 1857 (2009). https://doi.org/10.1002/adfm.200801435
  16. J. A. Parkinson and S. E. Allen, Commun. Soil Sci. Plant Anal. 6, 1 (1975).
  17. C. T. Murray, P. Kendall, A. Larson, C. Harvey and G. Staus, Thermal Conductivity, 28, 309 (2006).
  18. Y. Zhu, K. Mimura and M. Isshiki, Mater. Trans., 43, 2173 (2002). https://doi.org/10.2320/matertrans.43.2173
  19. J. H. Park and K. Natesan, Oxid. Met., 39, 411 (1993). https://doi.org/10.1007/BF00664664
  20. O. Pena-Rodriguez and U. Pal, J. Opt. Soc. Am. B, 28, 2735 (2011). https://doi.org/10.1364/JOSAB.28.002735
  21. J. Jiang, G. Oberdorster and P. Biswas, J. Nanopart. Res., 11, 77 (2009). https://doi.org/10.1007/s11051-008-9446-4
  22. Z. Ai, L. Zhang, S. Lee and W. Ho, J. Phys. Chem. C, 113, 20896 (2009). https://doi.org/10.1021/jp9083647
  23. R. Tsu, J. W. Mcpherson and W. R. Mckee, 38th Annual International Reliability Physics Symposium (San Jose, California, 2000).
  24. U. Nerle and M. K. Rabinal, IOSR J. Appl. Phys., 5, 1 (2013).
  25. J. Hong and S.-E. Shim, Appl. Chem. Eng. (in Korea), 21, 115 (2010).