참고문헌
- N. S. Lewis and G. Crabtree, "Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization", DOE, USA, (2005).
- B. I. Ismail and W. H. Ahmed, "Thermoelectric Power Generation using Waste-Heat Energy as an Alternative Green Technology", Recent Patents on Electrical & Electronic Engineering, 2(1), 27 (2009). https://doi.org/10.2174/1874476110902010027
- K. Biswas, J. He, I. D. Blum, C.-I Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, "High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures", Nature, 489, 414 (2012). https://doi.org/10.1038/nature11439
- E. S. Toberer, F. M. Andrew and G. J. Snyder, "Zintl Chemistry for Designing High Efficiency Thermoelectric Materials", Chemistry of Materials, 22(3), 624 (2009). https://doi.org/10.1021/cm901956r
- J. R. Szczech, J. M. Higgins and S. Jin, "Enhancement of the Thermoelectric Properties in Nanoscale and Nanostructured Materials", Journal of Materials Chemistry, 21(12), 4037 (2011). https://doi.org/10.1039/C0JM02755C
- C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, "Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features", Advanced Materials, 22(36), 3970 (2010). https://doi.org/10.1002/adma.201000839
- R. E. Hummel, "Electronic properties of materials", Springer Science & Business Media (2011).
- T. M. Tritt, G. Mahan, H. B. Lyon, M. G. Kanatzidis, "Thermoelectric materials-new directions and approaches", Materials Research Society, Warrendale, PA (1997).
-
M. B. A. Bashir, S. M. Said, M. F. M. Sabri, D. A. Shnawah and M. H. Elsheikh, "Recent Advances on
$Mg_2Si_{1-x}Sn_x $ Materials for Thermoelectric Generation", Renewable and Sustainable Energy Reviews, 37, 569 (2014). https://doi.org/10.1016/j.rser.2014.05.060 - P. Pichanusakorn and P. Bandaru, "Nanostructured Thermoelectrics", Materials Science and Engineering: R: Reports, 67(2), 19 (2010). https://doi.org/10.1016/j.mser.2009.10.001
- H. S. Kim, W. Liu, G. Chen, C.-W. Chu and Z. Ren, "Relationship between Thermoelectric Figure of Merit and Energy Conversion Efficiency", PNAS, 112(27), 8205 (2015). https://doi.org/10.1073/pnas.1510231112
- T. H. An, C. Park, W. S. Seo, S. M. Choi, I. H. Kim and S. U. Kim, "Enhancement of p-type Thermoelectric Properties in an Mg2Sn System", Journal of the Korean Physical Society, 60(10), 1717 (2012). https://doi.org/10.3938/jkps.60.1717
- C. B. Vining, "An Inconvenient Truth about Thermoelectrics", Nature materials, 8(2), 83 (2009). https://doi.org/10.1038/nmat2361
- D. M. Rowe, "Thermoelectrics Handbook: Macro to Nano", CRC Taylor & Francis, Boca Raton (2006).
- C. Han, Z. Li and S.X. Dou, "Recent Progress in Thermoelectric Materials", Chinese Science Bulletin, 59(18), 2073 (2014). https://doi.org/10.1007/s11434-014-0237-2
- Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen and G. J. Snyder, "Convergence of Electronic Bands for High Performance Bulk Thermoelectrics", Nature, 473, 66 (2011). https://doi.org/10.1038/nature09996
- L. D. Zhao, S. Hao, S.-H. Lo, C.-I. Wu, X. Zhou, Y. Lee, H. Li, K. Biswas, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, "High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures", J. Am. Chem. Soc., 135, 7364 (2013). https://doi.org/10.1021/ja403134b
- J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States", Science, 321, 554 (2008). https://doi.org/10.1126/science.1159725
- X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J. R. Salvador, W. Zhang, L. Chen and W. W.-Ng, "On the Design of High-Efficiency Thermoelectric Clathrates Through a Systematic Cross-Substitution of Framework Elements", Adv. Funct. Mater., 20, 755 (2010). https://doi.org/10.1002/adfm.200901817
- X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang and L. Chen, "Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports", J. Am. Chem. Soc., 133, 7837 (2011). https://doi.org/10.1021/ja111199y
- L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, "Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals", Nature, 508, 373 (2014). https://doi.org/10.1038/nature13184
- W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang and T. M. Tritt, "Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi, Sb)2Te3 Nanocomposites", Nano Lett., 10, 3283 (2010). https://doi.org/10.1021/nl100804a
-
K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, "Cubic
$AgPb_mSbTe2_{+m}$ : Bulk Thermoelectric Materials with High Figure of Merit", Science, 303, 818 (2004). https://doi.org/10.1126/science.1092963 - X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen and Z. F. Ren, "Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy", Appl. Phys. Lett., 93, 193121 (2008). https://doi.org/10.1063/1.3027060
- G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat and B. B. Iversen, "Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties", Nat. Mater., 3, 458 (2004). https://doi.org/10.1038/nmat1154
- J.-S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim and G. Kotliar, "Peierls Distortion as a Route to High Thermoelectric Performance in In4Se3-Delta Crystals", Nature, 459, 965 (2009). https://doi.org/10.1038/nature08088
- Q. Shen, C. T. Goto, T. H. J. Yang, G. P. Meisner and C. Uher, "Effects of Partial Substitution of Ni by Pd on the Thermoelectric Properties of ZrNiSn-Based Half-Heusler Compounds", Appl. Phys. Lett., 79, 4165 (2001). https://doi.org/10.1063/1.1425459
- C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao and T. Zhu, "Realizing High Figure of Merit in Heavy-Band p-Type Half- Heusler Thermoelectric Materials", Nat. Commun., 6, 8144 (2015). https://doi.org/10.1038/ncomms9144
- J. Yang , L. Xi , W. Qiu, L. Wu , X.Shi , L. Chen , J. Yang, W. Zhang, C. Uher and D. J Singh, "On the Tuning of Electrical and Thermal Transport in Thermoelectrics: An Integrated Theory-Experiment Perspective", Computational Materials, 2, 1 (2016). https://doi.org/10.1038/s41524-016-0001-z
- G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen and Z. Ren, "Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys", Nano Lett., 8(12), 4670 (2008). https://doi.org/10.1021/nl8026795
- J.C. Zheng, "Recent Advances on Thermoelectric Materials", Front. Phys. China, 3(3), 269 (2008). https://doi.org/10.1007/s11467-008-0028-9
- S. M. Kauzlarich, S. R. Brown and G. J. Snyder, "Zintl Phase for Thermoelectric Devices", Dalton Trans., 2099, (2007).
- S. G. Jeffrey and E. S. Toberer, "Complex Thermoelectric Materials", Nature materials, 7(2), 105 (2008). https://doi.org/10.1038/nmat2090
- G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno, A. Bar-Cohen and B. Yang, "Superlattice Based Thin film Thermoelectric Modules with High Cooling Fluxes", Nature communications, 7 (2016).
- https://www.electronics-cooling.com/2011/09/thin-film-thermoelectrics- today-and-tomorrow/
- G. H. Grosch and K. J. Range, "Studies on AB2-Type Intermetallic Compounds, I. Mg 2 Ge and Mg 2 Sn: Single-Crystal Structure Refinement and Ab Initio Calculations", Journal of alloys and compounds, 235(2), 250 (1996). https://doi.org/10.1016/0925-8388(95)02058-6
-
J. Shuai, H. Geng, Y. Lan, Z. Zhu, C. Wang, Z. Liu, J. Bao, C.-Wu Chu, J. Sui and Z. Ren, "Higher Thermoelectric Performance of Zintl Phases
$(Eu_{0.5}Yb_{0.5})_{1−x}Ca_xMg_2Bi_2$ by Band Engineering and Strain Fluctuation", PNAS, 113(48), 13576 (2016). https://doi.org/10.1073/pnas.1617663113 - J. de Boor, S. Gupta, H. Kolb, T. Dasgupta and E. Muller, "Thermoelectric Transport and Microstructure of Optimized Mg 2 Si 0.8 Sn 0.2", Journal of Materials Chemistry C, 3(40), 10467 (2015). https://doi.org/10.1039/C5TC01535A
- H. Y. Chen and N. Savvides, "Microstructure and Thermoelectric Properties of n-and p-type Doped Mg2Sn Compounds Prepared by the Modified Bridgman Method", Journal of Electronic materials, 38, 1056 (2009). https://doi.org/10.1007/s11664-008-0630-1
- X. Li, S.M. Li, S.K. Feng, H. Zhong and H.Z. Fu, "Directional Solidification and Thermoelectric Properties of Undoped Mg2Sn Crystal", Journal of Electronic Materials, 45, 2895 (2016). https://doi.org/10.1007/s11664-015-4320-5
- M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, "Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites", Nano letters, 11, 2225 (2011). https://doi.org/10.1021/nl201206d
- G. B. Granger, C. Navone, J. Leforestier, M. Boidot, K. Romanjek, J. Carrete and J. Simon, "Microstructure Investigations and Thermoelectrical Properties of an N Type Magnesium-Silicon-Tin Alloy Sintered from a Gas-Phase Atomized Powder", Acta Materialia, 96, 437 (2015). https://doi.org/10.1016/j.actamat.2015.04.059
피인용 문헌
- 박막레그 직경에 따른 열전박막모듈의 열에너지 하비스팅 특성 비교 vol.25, pp.4, 2017, https://doi.org/10.6117/kmeps.2018.25.4.067
- PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성 vol.26, pp.4, 2017, https://doi.org/10.6117/kmeps.2019.26.4.119
- PDMS로 충진된 신축열전모듈의 신축특성과 발전특성 vol.26, pp.4, 2017, https://doi.org/10.6117/kmeps.2019.26.4.149
- Recent Progress in Transient Liquid Phase and Wire Bonding Technologies for Power Electronics vol.10, pp.7, 2020, https://doi.org/10.3390/met10070934
- Fabrication of flexible thermoelectric composites by solution 3D printing technology vol.28, pp.None, 2021, https://doi.org/10.1016/j.coco.2021.100944
- Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu2-δSe Phase vol.13, pp.51, 2017, https://doi.org/10.1021/acsami.1c13526