DOI QR코드

DOI QR Code

Recent Advances in Thermoelectric Power Generation Technology

  • Received : 2017.02.01
  • Accepted : 2017.03.08
  • Published : 2017.03.31

Abstract

Thermoelectric power generation (TEG) technology with high figure of merit (ZT) has become the need of the modern world. TEG is a potent technology which can tackle most of the environmental issues such as global warming, change in climatic conditions over the globe, and for burning out of various resources of non-renewable energy like as petroleum deposits and gasolines. Although thermoelectric materials generally convert the heat energy from wastes to electricity according to the theories Seebeck and Peltier effects yet they have not been fully exploited to realize their potential. Researchers are focusing mainly on how to improve the current ZT value from 1 to 2 or even 3 by various approaches. However, a higher ZT value is found to be difficult due to complex thermoelectric properties of materials. Hence, there is a need for developing materials with high figure of merit. Recently, various nanotechnological approaches have been incorporated to improve the thermoelectric properties of materials. In this review paper, the authors have performed a thorough literature survey of various kinds of TEG technology.

Keywords

References

  1. N. S. Lewis and G. Crabtree, "Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization", DOE, USA, (2005).
  2. B. I. Ismail and W. H. Ahmed, "Thermoelectric Power Generation using Waste-Heat Energy as an Alternative Green Technology", Recent Patents on Electrical & Electronic Engineering, 2(1), 27 (2009). https://doi.org/10.2174/1874476110902010027
  3. K. Biswas, J. He, I. D. Blum, C.-I Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, "High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures", Nature, 489, 414 (2012). https://doi.org/10.1038/nature11439
  4. E. S. Toberer, F. M. Andrew and G. J. Snyder, "Zintl Chemistry for Designing High Efficiency Thermoelectric Materials", Chemistry of Materials, 22(3), 624 (2009). https://doi.org/10.1021/cm901956r
  5. J. R. Szczech, J. M. Higgins and S. Jin, "Enhancement of the Thermoelectric Properties in Nanoscale and Nanostructured Materials", Journal of Materials Chemistry, 21(12), 4037 (2011). https://doi.org/10.1039/C0JM02755C
  6. C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, "Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features", Advanced Materials, 22(36), 3970 (2010). https://doi.org/10.1002/adma.201000839
  7. R. E. Hummel, "Electronic properties of materials", Springer Science & Business Media (2011).
  8. T. M. Tritt, G. Mahan, H. B. Lyon, M. G. Kanatzidis, "Thermoelectric materials-new directions and approaches", Materials Research Society, Warrendale, PA (1997).
  9. M. B. A. Bashir, S. M. Said, M. F. M. Sabri, D. A. Shnawah and M. H. Elsheikh, "Recent Advances on $Mg_2Si_{1-x}Sn_x $ Materials for Thermoelectric Generation", Renewable and Sustainable Energy Reviews, 37, 569 (2014). https://doi.org/10.1016/j.rser.2014.05.060
  10. P. Pichanusakorn and P. Bandaru, "Nanostructured Thermoelectrics", Materials Science and Engineering: R: Reports, 67(2), 19 (2010). https://doi.org/10.1016/j.mser.2009.10.001
  11. H. S. Kim, W. Liu, G. Chen, C.-W. Chu and Z. Ren, "Relationship between Thermoelectric Figure of Merit and Energy Conversion Efficiency", PNAS, 112(27), 8205 (2015). https://doi.org/10.1073/pnas.1510231112
  12. T. H. An, C. Park, W. S. Seo, S. M. Choi, I. H. Kim and S. U. Kim, "Enhancement of p-type Thermoelectric Properties in an Mg2Sn System", Journal of the Korean Physical Society, 60(10), 1717 (2012). https://doi.org/10.3938/jkps.60.1717
  13. C. B. Vining, "An Inconvenient Truth about Thermoelectrics", Nature materials, 8(2), 83 (2009). https://doi.org/10.1038/nmat2361
  14. D. M. Rowe, "Thermoelectrics Handbook: Macro to Nano", CRC Taylor & Francis, Boca Raton (2006).
  15. C. Han, Z. Li and S.X. Dou, "Recent Progress in Thermoelectric Materials", Chinese Science Bulletin, 59(18), 2073 (2014). https://doi.org/10.1007/s11434-014-0237-2
  16. Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen and G. J. Snyder, "Convergence of Electronic Bands for High Performance Bulk Thermoelectrics", Nature, 473, 66 (2011). https://doi.org/10.1038/nature09996
  17. L. D. Zhao, S. Hao, S.-H. Lo, C.-I. Wu, X. Zhou, Y. Lee, H. Li, K. Biswas, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, "High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures", J. Am. Chem. Soc., 135, 7364 (2013). https://doi.org/10.1021/ja403134b
  18. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States", Science, 321, 554 (2008). https://doi.org/10.1126/science.1159725
  19. X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J. R. Salvador, W. Zhang, L. Chen and W. W.-Ng, "On the Design of High-Efficiency Thermoelectric Clathrates Through a Systematic Cross-Substitution of Framework Elements", Adv. Funct. Mater., 20, 755 (2010). https://doi.org/10.1002/adfm.200901817
  20. X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang and L. Chen, "Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports", J. Am. Chem. Soc., 133, 7837 (2011). https://doi.org/10.1021/ja111199y
  21. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, "Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals", Nature, 508, 373 (2014). https://doi.org/10.1038/nature13184
  22. W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang and T. M. Tritt, "Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi, Sb)2Te3 Nanocomposites", Nano Lett., 10, 3283 (2010). https://doi.org/10.1021/nl100804a
  23. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, "Cubic $AgPb_mSbTe2_{+m}$: Bulk Thermoelectric Materials with High Figure of Merit", Science, 303, 818 (2004). https://doi.org/10.1126/science.1092963
  24. X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen and Z. F. Ren, "Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy", Appl. Phys. Lett., 93, 193121 (2008). https://doi.org/10.1063/1.3027060
  25. G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat and B. B. Iversen, "Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties", Nat. Mater., 3, 458 (2004). https://doi.org/10.1038/nmat1154
  26. J.-S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim and G. Kotliar, "Peierls Distortion as a Route to High Thermoelectric Performance in In4Se3-Delta Crystals", Nature, 459, 965 (2009). https://doi.org/10.1038/nature08088
  27. Q. Shen, C. T. Goto, T. H. J. Yang, G. P. Meisner and C. Uher, "Effects of Partial Substitution of Ni by Pd on the Thermoelectric Properties of ZrNiSn-Based Half-Heusler Compounds", Appl. Phys. Lett., 79, 4165 (2001). https://doi.org/10.1063/1.1425459
  28. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao and T. Zhu, "Realizing High Figure of Merit in Heavy-Band p-Type Half- Heusler Thermoelectric Materials", Nat. Commun., 6, 8144 (2015). https://doi.org/10.1038/ncomms9144
  29. J. Yang , L. Xi , W. Qiu, L. Wu , X.Shi , L. Chen , J. Yang, W. Zhang, C. Uher and D. J Singh, "On the Tuning of Electrical and Thermal Transport in Thermoelectrics: An Integrated Theory-Experiment Perspective", Computational Materials, 2, 1 (2016). https://doi.org/10.1038/s41524-016-0001-z
  30. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen and Z. Ren, "Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys", Nano Lett., 8(12), 4670 (2008). https://doi.org/10.1021/nl8026795
  31. J.C. Zheng, "Recent Advances on Thermoelectric Materials", Front. Phys. China, 3(3), 269 (2008). https://doi.org/10.1007/s11467-008-0028-9
  32. S. M. Kauzlarich, S. R. Brown and G. J. Snyder, "Zintl Phase for Thermoelectric Devices", Dalton Trans., 2099, (2007).
  33. S. G. Jeffrey and E. S. Toberer, "Complex Thermoelectric Materials", Nature materials, 7(2), 105 (2008). https://doi.org/10.1038/nmat2090
  34. G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno, A. Bar-Cohen and B. Yang, "Superlattice Based Thin film Thermoelectric Modules with High Cooling Fluxes", Nature communications, 7 (2016).
  35. https://www.electronics-cooling.com/2011/09/thin-film-thermoelectrics- today-and-tomorrow/
  36. G. H. Grosch and K. J. Range, "Studies on AB2-Type Intermetallic Compounds, I. Mg 2 Ge and Mg 2 Sn: Single-Crystal Structure Refinement and Ab Initio Calculations", Journal of alloys and compounds, 235(2), 250 (1996). https://doi.org/10.1016/0925-8388(95)02058-6
  37. J. Shuai, H. Geng, Y. Lan, Z. Zhu, C. Wang, Z. Liu, J. Bao, C.-Wu Chu, J. Sui and Z. Ren, "Higher Thermoelectric Performance of Zintl Phases $(Eu_{0.5}Yb_{0.5})_{1−x}Ca_xMg_2Bi_2$ by Band Engineering and Strain Fluctuation", PNAS, 113(48), 13576 (2016). https://doi.org/10.1073/pnas.1617663113
  38. J. de Boor, S. Gupta, H. Kolb, T. Dasgupta and E. Muller, "Thermoelectric Transport and Microstructure of Optimized Mg 2 Si 0.8 Sn 0.2", Journal of Materials Chemistry C, 3(40), 10467 (2015). https://doi.org/10.1039/C5TC01535A
  39. H. Y. Chen and N. Savvides, "Microstructure and Thermoelectric Properties of n-and p-type Doped Mg2Sn Compounds Prepared by the Modified Bridgman Method", Journal of Electronic materials, 38, 1056 (2009). https://doi.org/10.1007/s11664-008-0630-1
  40. X. Li, S.M. Li, S.K. Feng, H. Zhong and H.Z. Fu, "Directional Solidification and Thermoelectric Properties of Undoped Mg2Sn Crystal", Journal of Electronic Materials, 45, 2895 (2016). https://doi.org/10.1007/s11664-015-4320-5
  41. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, "Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites", Nano letters, 11, 2225 (2011). https://doi.org/10.1021/nl201206d
  42. G. B. Granger, C. Navone, J. Leforestier, M. Boidot, K. Romanjek, J. Carrete and J. Simon, "Microstructure Investigations and Thermoelectrical Properties of an N Type Magnesium-Silicon-Tin Alloy Sintered from a Gas-Phase Atomized Powder", Acta Materialia, 96, 437 (2015). https://doi.org/10.1016/j.actamat.2015.04.059

Cited by

  1. 박막레그 직경에 따른 열전박막모듈의 열에너지 하비스팅 특성 비교 vol.25, pp.4, 2017, https://doi.org/10.6117/kmeps.2018.25.4.067
  2. PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성 vol.26, pp.4, 2017, https://doi.org/10.6117/kmeps.2019.26.4.119
  3. PDMS로 충진된 신축열전모듈의 신축특성과 발전특성 vol.26, pp.4, 2017, https://doi.org/10.6117/kmeps.2019.26.4.149
  4. Recent Progress in Transient Liquid Phase and Wire Bonding Technologies for Power Electronics vol.10, pp.7, 2020, https://doi.org/10.3390/met10070934
  5. Fabrication of flexible thermoelectric composites by solution 3D printing technology vol.28, pp.None, 2021, https://doi.org/10.1016/j.coco.2021.100944
  6. Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu2-δSe Phase vol.13, pp.51, 2017, https://doi.org/10.1021/acsami.1c13526