DOI QR코드

DOI QR Code

Characteristics of Soil Pavement by Red Mud Content and Binder Type

레드머드 대체율에 따른 결합재별 흙포장재의 특성

  • Received : 2017.02.23
  • Accepted : 2017.03.17
  • Published : 2017.03.30

Abstract

Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. The development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the optimum water content, compressive strength, water absorption and efflorescence of alkali-activated slag-red mud soil pavement according to binder type. The results showed that the optimum water content, moisture absorption coefficient and efflorescence area of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the redmud content increased.

레드머드는 보오크사이트 원광석에서 생산되는 알루미나의 선광과정에서 발생되는 무기질 부산물이다. 레드머드를 활용하고자하는 연구가 국내에서 이루어지고 있다. 강알칼리성의 레드머드를 건설산업용 촉진제로서 활용하고자 하는 연구로서 알칼리활성화 슬래그-레드머드 시멘트가 국내외적으로 발표되고 있다. 본 논문은 레드머드 대체율에 따른 알칼리활성화 슬래그-레드머드 건식 흙포장재의 최적함수율, 압축강도, 흡수율, 백화발생 특성에 대하여 비교 검토하였다. 그 결과 레드머드 대체율이 증가할수록 알칼리활성화 슬래그-레드머드 흙포장재의 최적 함수비, 흡수율, 백화면적은 증가하고 압축강도는 감소하였다.

Keywords

References

  1. Chang, J.J., Yeih, W., Chung, T.J., Huang, R. (2016). Properties of pervious concrete made with electric arc furnace slag and alkali-activated slag cement, Construction and Building Materials, 109, 34-40. https://doi.org/10.1016/j.conbuildmat.2016.01.049
  2. Daniel, V.R , Joao, A.L., Marcio, R.M. (2011). Potential use of natural red mud as pozzolan for portland cement, Materials Research, 14(1), 60-66. https://doi.org/10.1590/S1516-14392011005000001
  3. Dowa, C., Glasserb, F.P. (2003). Calcium carbonate efflorescence on Portland, cement and building materials, Cement and Concrete Research, 33, 147-154. https://doi.org/10.1016/S0008-8846(02)00937-7
  4. Gonga, C., Yang, N. (2000). Effect of phosphate on the hydration of alkali-activated red mud slag cementitious material, Cement and Concrete Research, 30, 1013-1016. https://doi.org/10.1016/S0008-8846(00)00260-X
  5. Kang, S.P. (2012). A study on the usability of red mud as activator of alkali-activated cementless binder, Journal of the Architectural Institute of Korea Structure & Construction, 28(11), 133-140 [in Korean]. https://doi.org/10.5659/JAIK_SC.2012.28.11.133
  6. Kang, S.P. (2015). "A study on the field applicability evaluation alkali-activated soil pavement using red mud," Proceeding of the Korean Institute of Building Construction, 15(1), 95-97 [in Korean].
  7. Kang, S.P., Kang, H.J. (2017). Durability of alkali-activated slag-red mud cement mortar using polymer, Journal of the Architectural Institute of Korea Structure & Construction, 33(1), 81-88 [in Korean]. https://doi.org/10.5659/JAIK_SC.2017.33.1.81
  8. Kani, E.N., Allahverdi, A., Provis, J.L. (2012). Efflorescence control in geopolymer binders based on natural pozzolan, Cement and Concrete Composites, 34, 25-33. https://doi.org/10.1016/j.cemconcomp.2011.07.007
  9. Kropp, J. (1995). Performance Criteria for Concrete Durability, E&FN Spon, London, 103-111.
  10. Kwon, S.J., Kang, S.P. (2016). Strength and pore characteristics of alkali-activated slag-red mud cement mortar used polymer according to red mud content, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(2), 26-33 [in Korea]. https://doi.org/10.11112/JKSMI.2016.20.2.026
  11. Lee, M., Lee J. (2001). Concrete's water tightness evaluation based on water absorption coefficient theory, Journal of the Architectural Institute of Korea Structure & Construction, 17(2), 75-83 [in Korean].
  12. Pan, Z., Cheng, L., Lu, Y., Yang, N. (2002). Hydration products of alkali-activated slag-red mud cementitious material, Cement and Concrete Research, 32, 357-362. https://doi.org/10.1016/S0008-8846(01)00683-4
  13. Pan, Z., Li, D., Yu, J., Yang, N. (2003). Properties and microstructure of the hardened alkali-activated red mud-slag cementitious material, Cement and Concrete Research, 33, 1437-1441. https://doi.org/10.1016/S0008-8846(03)00093-0
  14. Pontikes, Y., Angelopoulos, G.N. (2013). Bauxite residue in cement and cementitious applications : Current status and a possible way forward, Resources, Conservation and Recycling, 73, 53-63. https://doi.org/10.1016/j.resconrec.2013.01.005
  15. Zhang, Z., Provis, J.L. (2014). Andrew reid, hao wang, fly ash-based geopolymers: the relationship between composition, pore structure and efflorescence, Cement and Concrete Research, 64, 30-41. https://doi.org/10.1016/j.cemconres.2014.06.004