Acknowledgement
Supported by : Pukyong National University
References
- Bang, H.J., Kim, H.I. and Lee, K.S. (2012), "Measurement of strain and bending deflection of a wind turbine tower using arrayed FBG sensors", Int. J. Precision Eng. Manufact., 13(12), 2121-2126. https://doi.org/10.1007/s12541-012-0281-2
- Barazanchy, D., Martinez, M., Rocha, B. and Yanishevsky, M. (2014), "A hybrid structural health monitoring system for the detection and localization of damage in composite structures", J. Sensors, 1-10.
- Bendat, J.S. and Piersol, A.G. (1993), Engineering application of correlation and spectral ananlysis, 2nd Ed., Wiley, New York.
- Caithness Windfarm Information Forum (2016), "Summary of wind turbine accident data to 31 March 2016", www.caithnesswindfarms.co.uk.
- Chiang, C.H., Hsu, K.T., Cheng, C.C., Pan, C.C., Huang, C.L. and Cheng, T.M. (2016), "Dynamic survey of wind turbine vibrations", Proceeding of SPIE 9804, Las Vegas, USA.
- Chou, J.S. and Tu, W.T. (2010), "Failure analysis and risk management of a collapsed large wind turbine tower", Eng. Fail. Anal., 18(1), 295-313. https://doi.org/10.1016/j.engfailanal.2010.09.008
- Corey Pitchford, Benjamin L. Grisso and Daniel J. Inman (2007), "Impedance-based structural health monitoring of wind turbine blades", Proceeding of SPIE 6532, Health Monitoring of Structural and Biological Systems.
- Dutton, A.G. (2004), "Thermoelastic stress measurement and acoustic emission monitoring in wind turbine blade testing", European Wind Energy Conference, London, UK.
- Ebert, R. (2016), "Laser vibrometry for wind turbines inspection", Proceeding of SPIE 9804, Las Vegas, USA.
- Han, X., He, Q., Sebastijanovic, N., Ma, T. and Yang, H.T.Y. (2007), "Developing hybrid structural health monitoring via integrated global sensing and local infrared imaging", Proceeding of SPIE 6529, San Diego, USA.
- Huynh, T.C. and Kim, J.T. (2014), "Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique", Math. Prob. Eng., 1-11.
- Huynh, T.C. and Kim, J.T. (2016), "Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders", Smart Struct. Syst., 17(6), 881-901. https://doi.org/10.12989/sss.2016.17.6.881
- Ishihara, T., Yamaguchi, A., Takahara, K., Mekaru, T. and Matsuura, S. (2005), "An analysis of damaged wind turbines by Typhoon Maemi in 2003", Proceeding of 6th Asia-Pacific Conference on Wind Engineering (APCWE-VI), 1413-1428.
- Joosse, P.A., Blanch, M.J., Dutton, A.G., Kouroussis, D.A., Philippidis, T.P. and Vionis, P.S. (2002), "Acoustic emission monitoring of small wind turbine blades", J. Solar Energy Eng., 124(4), 446-454. https://doi.org/10.1115/1.1509769
- Kim, J.T., Na, W.B., Park, J.H. and Hong, D.S. (2006), "Hybrid health monitoring of structural joints using modal parameters and EMI signatures", Proceeding of SPIE, San Diego, USA.
- Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
- Kim, J.T., Park, J.H., Hong, D.S. and Ho, D.D. (2011), "Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections", Smart Struct. Syst., 7(5), 393-416. https://doi.org/10.12989/sss.2011.7.5.393
- Kim, J.T., Ryu, Y.S., Cho H.M. and Stubbs, N. (2003), "Damage identification in beam-type structures: frequency-based method vs mode-shape-based method", Eng. Struct., 25(1), 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
- Lading, L., McGugan, M., Sendrup, P., Rheinlander, J. and Rusborg, J. (2002), "Fundamentals for remote structural health monitoring of wind turbine blades-a preproject", Annex E - Full-Scale Test of Wind Turbine Blade, Using Sensors and NDT.
- Law, S.S., Li, X.Y., Zhu, X.Q. and Chan, S.L. (2005), "Structural damage detection from wavelet packet sensitivity", Eng. Struct., 27(9), 1339-1348. https://doi.org/10.1016/j.engstruct.2005.03.014
- Lee, K.S., and Bang H.J. (2012), "A study on the prediction of lateral buckling load for wind turbine tower structures", J. Precision Eng. Manufact., 13(10), 1829-1836. https://doi.org/10.1007/s12541-012-0240-y
- Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electro-mechanical analysis of adaptive material - Determination of the actuator power consumption and system energy transfer", J. Intel. Mat. Syst. Str., 5, 12-20. https://doi.org/10.1177/1045389X9400500102
- Liang, C., Sun, F.P. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct, 5(2), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
- Matsuzaki, R. and Todoroki, A. (2006), "Wireless detection of internal delamination cracks in CFRP laminates using oscillating frequency changes", Compos. Sci. Technol., 66(3-4), 407-416. https://doi.org/10.1016/j.compscitech.2005.07.016
- Mostbock, A. and Petryna, Y. (2014), "Structural vibration monitoring of wind turbines", Proceedings of the 9th International Conference on Structural Dynamics, EURODYN, Portugal.
- Nguyen, T.C., Huynh, T.C. and Kim, J.T. (2015), "Numerical evaluation for vibration-based damage detection in wind turbine tower structure", Wind Struct., 21(6), 657-675. https://doi.org/10.12989/was.2015.21.6.657
- Overschee, V.P. and De Moor, B. (1996), Subspace identification for linear system, Kluwer Academic Publisher.
- Park, G., Kabeya, K., Cudney, H. and Inman, D. (1999), "Impedance-based structural health monitoring for temperature varying applications", Int. J. Series A Solid Mech. Mater. Eng., 42(2), 249-258.
- Park, J.H., Huynh, T.C., Choi, S.H. and Kim, J.T. (2015), "Vision-based technique for bolt-loosening detection in wind turbine tower", Wind Struct., 21(6), 709-726. https://doi.org/10.12989/was.2015.21.6.709
- Pitchford, C., Grisso, B.L. and Inman, D.J. (2007), "Impedance-based structural health monitoring of wind turbine blades", Proceedings of SPIE 6532, San Diego, USA.
- Qing, X., Kumar, A., Zhang, C., Gonzalez, I.F., Guo, G. and Chang, F.K. (2005), "A hybrid piezoelectric/fiber optic diagnostic system for structural health monitoring", Smart Mater. Struct., 14(3), 98-103. https://doi.org/10.1088/0964-1726/14/3/012
- Studer, M., and Peters, K. (2004), "Multiscale sensing for damage identification", Smart Mater. Struct., 13(2), 283-294. https://doi.org/10.1088/0964-1726/13/2/006
- Sun, F.P., Chaudhry Z., Liang, C. and Rogers C.A. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intel. Mat. Syst. Str., 6(1), 134-139. https://doi.org/10.1177/1045389X9500600117
- Tseng, K.K. and Wang, L. (2005), "Impedance-based method for nondestructive damage identification", J. Eng. Mech., 131(1), 58-64. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:1(58)
- Zagrai, A.N. and Giurgiutiu, V. (2001), "Electro-mechanical impedance method for crack detection in thin plates", J. Intel. Mat. Syst. Str., 12(10), 709-718. https://doi.org/10.1177/104538901320560355
Cited by
- Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage vol.26, pp.12, 2017, https://doi.org/10.1088/1361-665X/aa931b
- Advances and challenges in impedance-based structural health monitoring vol.4, pp.4, 2017, https://doi.org/10.12989/smm.2017.4.4.301
- Assembly strategies of wind turbine towers for minimum fatigue damage vol.25, pp.6, 2017, https://doi.org/10.12989/was.2017.25.6.569
- PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage vol.22, pp.1, 2018, https://doi.org/10.12989/sss.2018.22.1.057
- Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface vol.18, pp.9, 2017, https://doi.org/10.3390/s18092766
- Tension Force Estimation in Axially Loaded Members Using Wearable Piezoelectric Interface Technique vol.19, pp.1, 2017, https://doi.org/10.3390/s19010047
- Sensitivity of Piezoelectric-Based Smart Interfaces to Structural Damage in Bolted Connections vol.19, pp.17, 2019, https://doi.org/10.3390/s19173670
- A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers vol.73, pp.5, 2017, https://doi.org/10.12989/sem.2020.73.5.487
- Monitoring of bolt looseness using piezoelectric transducers: Three-dimensional numerical modeling with experimental verification vol.31, pp.6, 2020, https://doi.org/10.1177/1045389x20906003
- Damage Diagnosis for Offshore Wind Turbine Foundations Based on the Fractal Dimension vol.10, pp.19, 2017, https://doi.org/10.3390/app10196972
- Anomaly detection and prediction of high‐tension bolts by using strain of tower shell vol.23, pp.12, 2017, https://doi.org/10.1002/we.2551
- Development of Smart Sensing Technology Approaches in Structural Health Monitoring of Bridge Structures vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/2615029
- Applicability Analysis of Inspection and Monitoring Technologies in Wind Turbine Towers vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/5548727
- Deterioration of structural parameters due to corrosion in prestressed concrete identified by smart probe-based piezo sensor vol.3, pp.1, 2017, https://doi.org/10.1088/2631-8695/abded9
- A Sensor Data Processing Algorithm for Wind Turbine Hydraulic Pitch System Diagnosis vol.15, pp.1, 2017, https://doi.org/10.3390/en15010033