References
- Abdelbari, S., Fekrar, A., Heireche, H., Saidi, H., Tounsi, A. and Bedia, E.A.A. (2016), "An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler- Pasternak elastic foundations", Wind Struct., 22(3), 329-348. https://doi.org/10.12989/was.2016.22.3.329
- Altay, G. and Dokmeci, M.C. (2006), "A polar theory for vibrations of thin elastic shells", Int. J. Solid. Struct., 43(9), 2578-2601. https://doi.org/10.1016/j.ijsolstr.2005.06.027
- Altekin, M. and Altay, G. (2008), "Static analysis of point-supported super-elliptical plates", Arch. Appl. Mech., 78(4), 259-266. https://doi.org/10.1007/s00419-007-0154-9
- Altekin, M. (2008), "Free linear vibration and buckling of super-elliptical plates resting on symmetrically distributed point-supports on the diagonals", Thin-Wall. Struct., 46(10), 1066-1086.
- Altekin, M. (2009), "Free vibration of orthotropic super-elliptical plates on intermediate supports", Nuclear Eng. Des., 239(6), 981-999. https://doi.org/10.1016/j.nucengdes.2009.02.007
- Altekin, M. (2010a), "Bending of orthotropic super-elliptical plates on intermediate point supports", Ocean Eng., 37(11-12), 1048-1060. https://doi.org/10.1016/j.oceaneng.2010.03.015
- Altekin, M. (2010b), "Free in-plane vibration of super-elliptical plates", Shock Vib., 18(3), 471-484. https://doi.org/10.1155/2011/613521
- Altekin, M. (2014), "Large deflection analysis of point supported super-elliptical plates", Struct. Eng. Mech., 51(2), 333-347. https://doi.org/10.12989/sem.2014.51.2.333
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, New Jersey, USA.
- Bayer, I., Guven, U. and Altay, G. (2002), "A parametric study on vibrating clamped elliptical plates with variable thickness", J. Sound Vib., 254(1), 179-188. https://doi.org/10.1006/jsvi.2001.4099
- Bert, C.W. and Malik, M. (1996), "The differential quadrature method for irregular domains and application to plate vibration", Int. J. Mech. Sci., 38(6), 589-606. https://doi.org/10.1016/S0020-7403(96)80003-8
- Bhat, R.B., Singh, J. and Mundkur, G. (1993), "Plate characteristic functions and natural frequencies of vibration of plates by iterative reduction of partial differential equation", J. Vib. Acoust., 115(2), 177-181. https://doi.org/10.1115/1.2930328
- Ceribasi, S. and Altay, G. (2009), "Free vibration of super elliptical plates with constant and variable thickness by Ritz method", J. Sound Vib., 319(1-2), 668-680. https://doi.org/10.1016/j.jsv.2008.06.010
- Ceribasi, S. (2012), "Static and dynamic analysis of thin uniformly loaded super elliptical FGM plates", Mech. Adv. Mater. Struct., 19(5), 325-335.
- Chakraverty, S. (2009), Vibration of Plates, CRC Press, Boca Raton, USA.
- Chen, C.C., Lim, C.W., Kitipornchai, S. and Liew, K.M. (1999), "Vibration of symmetrically laminated thick super elliptical plates", J. Sound Vib., 220(4), 659-682. https://doi.org/10.1006/jsvi.1998.1957
- Chen, C.C. and Kitipornchai, S. (2000), "Free vibration of symmetrically laminated thick perforated plates", J. Sound Vib., 230(1), 111-132. https://doi.org/10.1006/jsvi.1999.2612
- Civalek, O. and Ulker, M. (2004), "Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates", Struct. Eng. Mech., 17(1), 1-14. https://doi.org/10.12989/sem.2004.17.1.001
- Civalek, O. (2007), "Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method", Int. J. Mech. Sci., 49(6), 752-765. https://doi.org/10.1016/j.ijmecsci.2006.10.002
- Civalek, O. and Ersoy, H. (2009), "Free vibration and bending analysis of circular Mindlin plates using singular convolution method", Commun. Numer. Meth. Eng., 25(8), 907-922. https://doi.org/10.1002/cnm.1138
- Civalek, O. and Ozturk, B. (2010), "Vibration analysis of plates with curvilinear quadrilateral domains by discrete singular convolution method", Struct. Eng. Mech., 36(3), 279-299. https://doi.org/10.12989/sem.2010.36.3.279
- DeCapua, N.J. and Sun, B.C. (1972), "Transverse vibration of a class of orthotropic plates", J. Appl. Mech., 39(2), 613-615. https://doi.org/10.1115/1.3422735
- Duran, R.G., Hervella-Nieto, L., Liberman, E., Rodriguez, R. and Solomin, J. (1999), "Approximation of the vibration modes of a plate by Reissner-Mindlin equations", Math. Comput., 68(228), 1447-1463. https://doi.org/10.1090/S0025-5718-99-01094-7
- Eftekhari, S.A. and Jafari, A.A. (2013), "A simple and accurate Ritz formulation for free vibration of thick rectangular and skew plates with general boundary conditions", Acta Mechanica, 224(1), 193-209. https://doi.org/10.1007/s00707-012-0737-6
- El-Sayad, M.A. and Ghazy, S.S.A. (2012), "Rayleigh-Ritz method for free vibration of mindlin trapezoidal plates", Can. J. Sci. Eng. Math., 3(4), 159-166.
- Farag, A.M., Mohamed, W.F., Ata, A.A. and Burhamy, B.M. (2013), "Computational initial value method for vibration analysis of symmetrically laminated composite plate", Int. Scholar. Scientific Res. Innovat., 7(1), 545-554.
- Geannakakes, G.N. (1995), "Natural frequencies of arbitrarily shaped plates using the Rayleigh-Ritz method together with natural co-ordinate regions and normalized characteristic orthogonal polynomials", J. Sound Vib., 182(3), 441-478. https://doi.org/10.1006/jsvi.1995.0210
- Gutierrez, R.H., Laura, P.A.A. and Rossit, C.A. (2000), "Fundamental frequency of transverse vibration of a clamped rectangular orthotropic plate with a free-edge hole", J. Sound Vib., 235(4), 697-701. https://doi.org/10.1006/jsvi.2000.2910
- Han, J.B. and Liew, K.M. (1997), "Analysis of moderately thick circular plates using differential quadrature method", J. Eng. Mech., 123(12), 1247-1252. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1247)
- Han, J.B. and Liew, K.M. (1999), "Axisymmetric free vibration of thick annular plates", Int. J. Mech. Sci., 41(9), 1089-1109. https://doi.org/10.1016/S0020-7403(98)00057-5
- Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", Int. J. Solid. Struct., 42(3-4), 819-583. https://doi.org/10.1016/j.ijsolstr.2004.06.063
- Hasheminejad, S.M., Keshvari, M.M. and Ashory, M.R. (2014), "Dynamic stability of super elliptical plates resting on elastic foundations under periodic in-plane loads", J. Eng. Mech., 140(1), 172-181. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000630
- Hughes, T.J.R., Taylor, R.L. and Kanoknukulchai, W. (1977), "A simple and efficient finite element for plate bending", Int. J. Numer. Method. Eng., 11(10), 1529-1543. https://doi.org/10.1002/nme.1620111005
- Irie, T., Yamada, G. and Aomura, S. (1980), "Natural frequencies of Mindlin circular plates", J. Appl. Mech., 47(3), 652-655. https://doi.org/10.1115/1.3153748
- Iyengar, K.T.S.R. and Raman, P.V. (1978), "Free vibration of circular plates of arbitrary thickness", J. Acoust. Soc. Am., 64(4), 1088-1092. https://doi.org/10.1121/1.382068
- Jazi, S.R. and Farhatnia, F. (2012), "Buckling analysis of functionally graded super elliptical plate using pb- 2 Ritz method", Adv. Mater. Res., 383-390, 5387-5391.
- Kim, C.S. (2003), "Natural frequencies of orthotropic elliptical and circular plates", J. Sound Vib., 259(3), 733-745. https://doi.org/10.1006/jsvi.2002.5278
- Krishnamoorthy, C.S. (1994), Finite Element Analysis: Theory and Programming, (Second Edition), Tata McGraw-Hill Publishing Company Limited, New Delhi.
- Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65(1), 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004
- Kutlu, A., Ugurlu, B., Omurtag, M.H. and Ergin, A. (2012), "Dynamic response of Mindlin plates resting on arbitrarily orthotropic Pasternak foundation and partially in contact with fluid", Ocean Eng., 42, 112-125. https://doi.org/10.1016/j.oceaneng.2012.01.010
- Lam, K.Y. and Hung, K.C. (1990), "Orthogonal polynomials and sub-sectioning method for vibration of plates", Comput. Struct., 34(6), 827-834. https://doi.org/10.1016/0045-7949(90)90353-4
- Lam, K.Y., Liew, K.M. and Chow, S.T. (1992), "Use of two-dimensional orthogonal polynomials for vibration analysis of circular and elliptical plates", J. Sound Vib., 154(2), 261-269. https://doi.org/10.1016/0022-460X(92)90580-Q
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2
- Leissa, A. (1993), Vibration of Plates, Acoustical Society of America, Columbus, USA.
- Liew, K.M., Lam, K.Y. and Chow, S.T. (1990), "Free vibration analysis of rectangular plates using orthogonal plate function", Comput. Struct., 34(1), 79-85. https://doi.org/10.1016/0045-7949(90)90302-I
- Liew, K.M., Xiang, Y. and Kitipornchai, S. (1993a), "Transverse vibration of thick rectangular plates-I. Comprehensive sets of boundary conditions", Comput. Struct., 49(1), 1-29. https://doi.org/10.1016/0045-7949(93)90122-T
- Liew, K.M., Hung, K.C. and Lim, K.M. (1993b), "A continuum three-dimensional vibration analysis of thick rectangular plates", Int. J. Solid. Struct., 30(24), 3357-3379. https://doi.org/10.1016/0020-7683(93)90089-P
- Liew, K.M., Xiang, Y. and Kitipornchai, S. (1995), "Research on thick plate vibration: a literature survey", J. Sound Vib., 180(1), 163-176. https://doi.org/10.1006/jsvi.1995.0072
- Liew, K.M. (1996), "Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method", J. Sound Vib., 198(3), 343-360. https://doi.org/10.1006/jsvi.1996.0574
- Liew, K.M., Wang, C.M., Xiang, Y. and Kitipornchai, S. (1998a), Vibration of Mindlin Plates, Elsevier Science Ltd., Oxford, UK.
- Liew, K.M., Kitipornchai, S. and Lim, C.W. (1998b), "Free vibration analysis of thick superelliptical plates", J. Eng. Mech., 124(2), 137-145. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:2(137)
- Liew, K.M. and Theo, T.M. (1999), "Three-dimensional vibration analysis of rectangular plates based on differential quadrature method", J. Sound Vib., 220(4), 577-599. https://doi.org/10.1006/jsvi.1998.1927
- Liew, K.M. and Feng, Z.C. (2001), "Three-dimensional free vibration analysis of perforated superelliptical plates via the p-Ritz method", Int. J. Mech. Sci., 43(11), 2613-2630. https://doi.org/10.1016/S0020-7403(01)00051-0
- Liew, K.M., Wang, J., Ng, T.Y. and Tan, M.J. (2004), "Free vibration and buckling analysis of sheardeformable plates based on FSDT meshfree method", J. Sound Vib., 276(3-5), 997-1017. https://doi.org/10.1016/j.jsv.2003.08.026
- Lim, C.W. and Liew, K.M. (1995), "Vibrations of perforated plates with rounded corners", J. Eng. Mech., 121(2), 203-213. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:2(203)
- Lim, C.W., Kitipornchai, S. and Liew, K.M. (1998), "A free-vibration analysis of doubly connected superelliptical laminated composite plates", Compos. Sci. Technol., 58(3-4), 435-445. https://doi.org/10.1016/S0266-3538(97)00167-X
- Lin, C.C. and Tseng, C.S. (1998), "Free vibration of polar orthotropic laminated circular and annular plates", J. Sound Vib., 209(5), 797-810. https://doi.org/10.1006/jsvi.1997.1293
- Ma, Y.Q. and Ang, K.K. (2006), "Free vibration of Mindlin plates based on the relative displacement plate element", Finite Element. Anal. Des., 42(11), 1021-1028. https://doi.org/10.1016/j.finel.2006.03.001
- Nallim, L.G. and Grossi, R.O. (2008), "Natural frequencies of symmetrically laminated elliptical and circular plates", Int. J. Mech. Sci., 50(7), 1153-1167. https://doi.org/10.1016/j.ijmecsci.2008.04.005
- Narita, Y. (1984), "Note on vibrations of point supported rectangular plates", J. Sound Vib., 93(4), 593-597. https://doi.org/10.1016/0022-460X(84)90428-0
- Narita, Y. (1986), "Free vibration analysis of orthotropic elliptical plates resting on arbitrarily distributed point supports", J. Sound Vib., 108(1), 1-10. https://doi.org/10.1016/S0022-460X(86)80306-6
- Rao, S.S. and Prasad, A.S. (1975), "Vibrations of annular plates including the effects of rotatory inertia and transverse shear deformation", J. Sound Vib., 42(3), 305-324. https://doi.org/10.1016/0022-460X(75)90247-3
- Reddy, J.N. (1993), An Introduction to the Finite Element Method, (Second Edition), McGraw-Hill International editions, Singapore.
- Senjanovic, I., Vladimir, N. and Tomic, M. (2013), "An advanced theory of moderately thick plate vibrations", J. Sound Vib., 332(7), 1868-1880. https://doi.org/10.1016/j.jsv.2012.11.022
- Senjanovic, I., Hadzic, N., Vladimir, N. and Cho, D.-S. (2014), "Natural vibrations of thick circular plate based on the modified Mindlin theory", Arch. Mech., 66(6), 389-409.
- Singh, B. and Chakraverty, S. (1992), "On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of transverse vibration of elliptic plates", Comput. Struct., 43(3), 439-443. https://doi.org/10.1016/0045-7949(92)90277-7
- Szilard, R. (1974), Theory and Analysis of Plates, Prentice Hall, Englewood Cliffs, USA.
- Szilard, R. (2004), Theories and Applications of Plate Analysis, John Wiley & Sons Inc., USA.
- Tang, H.W., Yang, Y.T. and Chen, C.K. (2012), "Application of new double side approach method to the solution of super-elliptical plate problems", Acta Mechanica, 223(4), 745-753. https://doi.org/10.1007/s00707-011-0592-x
- Thai, H.T. and Choi, D.H. (2013), "Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates", Appl. Math. Model., 37(18-19), 8310-8323. https://doi.org/10.1016/j.apm.2013.03.038
- Wang, C.M. (1994), "Natural frequencies formula for simply supported Mindlin plates", J. Vib. Acoust., 116(4), 536-540. https://doi.org/10.1115/1.2930460
- Wang, C.M. and Wang, L. (1994), "Vibration and buckling of super elliptical plates", J. Sound Vib., 171(3), 301-314. https://doi.org/10.1006/jsvi.1994.1122
- Wang, C.M., Xiang, Y. and Kitipornchai, S. (1995), "Vibration frequencies for elliptical and semi-elliptical Mindlin plates", Struct. Eng. Mech., 3(1), 35-48. https://doi.org/10.12989/sem.1995.3.1.035
- Wang, C.Y. (2015a), "Vibrations of completely free rounded rectangular plates", J. Vibration Acoust., 137(2), doi:10.1115/1.4029159.
- Wang, C.Y. (2015b), "Vibrations of completely free rounded regular polygonal plates", Int. J. Acoust. Vib., 20(2), 107-112.
- Wang, X., Yang, J. and Xiao, J. (1995a), "On free vibration analysis of circular annular plates with nonuniform thickness by the differential quadrature method", J. Sound Vib., 184(3), 547-551. https://doi.org/10.1006/jsvi.1995.0332
- Wu, T.Y. and Liu, G.R. (2001), "Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule", Int. J. Solid. Struct., 38(44-45), 7967-7980. https://doi.org/10.1016/S0020-7683(01)00077-4
- Wu, L. and Liu, J. (2005), "Free vibration analysis of arbitrary shaped thick plates by differential cubature method", Int. J. Mech. Sci., 47(1), 63-81. https://doi.org/10.1016/j.ijmecsci.2004.12.003
- Zhang, D.G. (2013), "Non-linear bending analysis of super-elliptical thin plates", Int. J. Non-Linear Mech., 55, 180-185. https://doi.org/10.1016/j.ijnonlinmec.2013.06.006
- Zhang, D.G. and Zhou, H.M. (2014), "Nonlinear symmetric free vibration analysis of super elliptical isotropic thin plates", CMC: Computers, Materials & Continua, 40(1), 21-34.
- Zhong, H. and Yu, T. (2007), "Flexural vibration analysis of an eccentric annular Mindlin plate", Arch. Appl. Mech., 77(4), 185-195. https://doi.org/10.1007/s00419-006-0083-z
- Zhou, D., Cheung, Y.K., Au, F.T.K. and Lo, S.H. (2002), "Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method", Int. J. Solid. Struct., 39(26), 6339- 6353. https://doi.org/10.1016/S0020-7683(02)00460-2
- Zhou, D., Au, F.T.K., Cheung, Y.K. and Lo, S.H. (2003), "Three-dimensional vibration analysis of circular and annular plates via the Chebyshev-Ritz method", Int. J. Solid. Struct., 40(12), 3089-3105. https://doi.org/10.1016/S0020-7683(03)00114-8
- Zhou, D., Lo, S.H., Cheung, Y.K. and Au, F.T.K. (2004), "3-D vibration analysis of generalized super elliptical plates using Chebyshev-Ritz method", Int. J. Solid. Struct., 41(16-17), 4697-4712. https://doi.org/10.1016/j.ijsolstr.2004.02.045
- Zhou, D., Au, F.T.K., Cheung, Y.K. and Lo, S.H. (2006), "Effect of built-in edges on 3-D vibrational characteristics of thick circular plates", Int. J. Solid. Struct., 43(7-8), 1960-1978. https://doi.org/10.1016/j.ijsolstr.2005.05.007
- http://people.sc.fsu.edu/-jpeterson/FEMbook.pdf
Cited by
- Dynamic analysis of a transversely isotropic non-classical thin plate vol.25, pp.1, 2017, https://doi.org/10.12989/was.2017.25.1.025
- A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
- Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates vol.29, pp.4, 2017, https://doi.org/10.12989/scs.2018.29.4.493
- Conformable solution of fractional vibration problem of plate subjected to in-plane loads vol.28, pp.6, 2019, https://doi.org/10.12989/was.2019.28.6.347