DOI QR코드

DOI QR Code

A Rapid Analysis of 226Ra in Raw Materials and By-Products Using Gamma-ray Spectrometry

감마분광분석을 이용한 원료물질 및 공정부산물 중 226Ra 신속분석방법

  • Received : 2017.01.19
  • Accepted : 2017.03.03
  • Published : 2017.03.30

Abstract

A gamma-ray peak of $^{226}Ra$ (186.2 keV) overlaps with one of $^{235}U$ (185.7 keV) in a gamma-ray spectrometry system. Though reference peaks of $^{235}U$ can be used to correct the peak interference of $^{235}U$ in the analysis of $^{226}Ra$, this requires a complicated calculation process and a high limit of quantitation. On the other hand, evaluating $^{226}Ra$ using the correction constant in the overlapped peak can make a rapid measurement of $^{226}Ra$ without the complicated calculation process as well as overcome the disadvantage in the indirect measurement of $^{214}Bi$, which means the confinement of $^{222}Rn$ gas in a sample container and a time period to recover the secular equilibrium. About 93 samples with 6 species for raw-materials and by-products were prepared to evaluate the activity of $^{226}Ra$ using the correction constant. The results were compared with the activity of $^{214}Bi$, which means the indirect measurement of $^{226}Ra$, to validate the method of the direct measurement of $^{226}Ra$ using the correction constant. The difference between the direct and indirect measurement of $^{226}Ra$ was generally below about ${\pm}20%$. However, in the case of the phospho gypsum, a large error of about 50% was found in the comparison results, which indicates the disequilibrium between $^{238}U$ and $^{226}Ra$ in the materials. Application results of the contribution ratio of $^{226}Ra$ were below about ${\pm}10%$. The direct measurement of $^{226}Ra$ using the correction constant can be an effective method for its rapid measurement of raw materials and by-products because the activity of $^{226}Ra$ can be produced with a simple calculation without the consideration of the integrity of a sample container and the time period to recover the secular equilibrium.

감마분광분석 시스템 상에서는 $^{226}Ra$(186.2 keV)과 $^{235}U$(185.7 keV)가 방출하는 감마선 에너지의 피크 중첩이 발생한다. $^{226}Ra$의 직접분석을 위해서는 중첩된 피크로부터 $^{235}U$의 기여를 제거해주거나 보정상수를 이용하여 실제 $^{226}Ra$의 방사능 값으로 보정 해주어야 한다. $^{235}U$가 방출하는 다른 감마선 피크를 참조하여 $^{235}U$의 기여를 제거할 경우 복잡한 수계산이 필요하며, 참조피크에서 기인하는 큰 불확도로 인해 높은 정량한계를 갖는다. 반면에 보정상수를 이용하여 $^{226}Ra$을 평가할 경우 간단한 계산으로 평가가 가능하며, 간접측정시 요구되는 $^{222}Rn$의 용기건전성과 방사평형 복구기간이 필요하지 않아 $^{226}Ra$의 신속 측정시 유용한 방법이다. 따라서 해당 방법을 통해 원료물질 3종과 공정부산물 3종, 총 93여개 시료에 대해서 보정상수로 산출된 $^{226}Ra$의 방사능 농도와 방사평형 된 $^{214}Bi$의 방사능 농도의 비교를 통해 유효성을 확인하였다. 대부분 ${\pm}20%$ 내에서 유효하였지만 인산석고의 경우 약 50%의 오차를 보였다. 이는 보정상수를 유도하기 위한 가정 중 $^{238}U$$^{226}Ra$의 방사평형 관계가 달라진 것으로 판단된다. 특이성을 반영한 보정상수를 적용하여 $^{226}Ra$의 방사능 농도에 대한 유효성을 평가한 결과 약 ${\pm}10%$로 좀 더 정밀한 결과를 얻을 수 있었다. 본 연구에서 산출된 보정상수를 통한 $^{226}Ra$의 방사능 농도 평가 방법은 복잡한 수계산이 필요하지 않고 용기선택으로부터 자유로우며 방사평형 복구를 위한 기간이 필요하지 않아 원료물질 및 공정부산물의 $^{226}Ra$의 신속한 농도 분포 평가시 유효한 방법이다.

Keywords

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation, Exposures of the Public and Workers from Various Sources of Radiation, UNSCEAR 2008 Report, 1-249 (2010).
  2. Nuclear Safety and Security Commission, Enforcement Ordinances of the Act on Safety Control of Radioactive Rays around Living Environment, Nuclear Security and Safety Commission (Radiation Safety Division), Law No. 13542 (2012).
  3. M. Omar, "Gamma-Ray Interference and Emission Probability Selection in The Determination of Natural Radionuclide Concentration using Gamma Spectrometry", J. of Nuclear & Related Technologies., 6(2), 78-88 (2009).
  4. B. Tucker, J. Donakowski, and H. David, "Comparison of Activity Determination of Radium-226 in FUSRAP Soil using Various Energy Lines", Waste Management Conference, February 26 - March 1, USA (2012).
  5. F. De Corte, H. Umans, D. Vandenberghe, A. De Wispelarere, and P. Van den haute, "Direct gamma-spectrometric measurement of the $^{226}Ra$ 186.2 keV line for detecting $^{238}U/^{226}Ra$ disequilibrium in determining the environmental dose rate for the luminescence dating of sediments", Appl. Radiat. Isot., Vol.63, 589-598 (2005). https://doi.org/10.1016/j.apradiso.2005.05.008
  6. Y.Y. Ji, K.H. Chung, J.M. Lim, C.J. Kim, M.J. Kang, S.T. Park, Z.H. Woo, B.C. Koo, and B.K. Seo, "Feasibility about the Direct Measurement of $^{226}Ra$ Using the Gamma-Ray Spectrometry", JNFCWT, 12(2), 97-105 (2014).
  7. Y.Y. Ebaid, S.A. El-Mongy, and K.A. Allam, "$^{235}U$-g emission contribution to the 186 keV energy transition of $^{226}Ra$ in environmental samples activity calculations", International congress, Vol.1276, 409-411 (2005).
  8. J.R. Giles, "TAN TSF-07 Pond Radium-226 Concentration and Corrections." Idaho national Engineering and Environmental Laboratory, 1-32, ER-WAG1-1018 (1998).
  9. Y.Y. Ji, J.M. Lim, H.C. Kim, C.J. Kim, C.S. Lim, and K.H. Chung, "Limitations of gamma-ray spectrometry in the quantification of $^{238}U$ and $^{232}Th$ in raw materials and by-products", J. Radioanal Nucl Chem., DOI 10.1007/s10967-016-4978-z (2016).
  10. K. Haddad, "True coincidence summing correction determination for $^{214}Bi$ principal gamma lines in NORM samples", J. Radioanal Nucl Chem., Vol. 300, 829-834 (2014). https://doi.org/10.1007/s10967-014-3030-4
  11. M. Jang, Y.Y. Ji, C. J. Kim, W.N. Lee, and M.J. Kang, "Dependence Evaluation of the Self-absorption Correction Factor for p-type High Purity Germanium Detector Characteristics", JNFCWT, 13(4), 295-300 (2015).
  12. A.J. Poole, D.J. Allington, A.J. Baxter, and A.K. Young, "The natural radioactivity of phosphate ore and associated waste products discharged into the eastern Irish Sea from a phosphoric acid production plant". Sci. Total Environ., vol.173/174, 137-149 (1995). https://doi.org/10.1016/0048-9697(95)04770-0
  13. B. Pierre, "Technology and Economics of The Wet Process", Fertilizer Science and Technology Series, vol.6, 1-740 (1989).
  14. A.C. Patra, "Disequilibrium of Naturally Occurring Radionuclides and Distribution of Trace Elements in A Highly Mineralised Zone", Homi Bhabha National Institute(Doctor's thesis), 1-239 (2010).
  15. G.H. Chung, G.S. Choi, M.J. Kang, Y.H. Jo, Y.Y. Ji, J.M. Lim, H.C. Kim, M Jang, C.J. Kim, and D.W. Park , Development of methods for the determination of $^{235,238}U$, $^{226}Ra$, $^{232}Th$ and $^{40}K$ in raw materials or byproducts, KAERI-CR-529 (2013).