DOI QR코드

DOI QR Code

Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory

  • Received : 2016.02.20
  • Accepted : 2017.01.13
  • Published : 2017.05.10

Abstract

In this paper a new eight-unknown higher order shear deformation theory is proposed for functionally graded (FG) material plates. The theory based on full twelve-unknown higher order shear deformation theory, simultaneously satisfy zeros transverse stresses at top and bottom surface of FG plates. Equations of motion are derived from principle of virtual displacement. Exact closed-form solutions are obtained for simply supported rectangular FG plates under uniform loading. The accuracy of present numerical results has been verified by comparing it with generalized shear deformation theory. The effect of power law index of functionally graded material, side-to-thickness ratio, and aspect ratio on static behavior of FG plates is investigated.

Keywords

Acknowledgement

Supported by : Vietnam National Foundation for Science and Technology Development (NAFOSTED)

References

  1. Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A firstorder shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Eng. J.l, 2(1), 53-62. https://doi.org/10.1016/j.asej.2011.05.003
  2. Apuzzo, A., Barretta, R. and Luciano, R. (2015), "Some analytical solutions of functionally graded Kirchhoff plates", Compos. Part B: Eng., 68, 266-269. https://doi.org/10.1016/j.compositesb.2014.08.048
  3. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
  4. Barretta, R. and Luciano, R. (2014), "Exact solutions of isotropic viscoelastic functionally graded Kirchhoff plates", Compos. Struct., 118, 448-454. https://doi.org/10.1016/j.compstruct.2014.07.044
  5. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  6. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
  7. Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490
  8. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005
  9. Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load - Part I: Analysis", Int. J. Solid. Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
  10. Della Croce, L. and Venini, P. (2004), "Finite elements for functionally graded Reissner-Mindlin plates", Comput. Meth. Appl. Mech. Eng., 193(9), 705-725. https://doi.org/10.1016/j.cma.2003.09.014
  11. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002
  12. Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008
  13. Jedrysiak, J. and Michalak, B. (2011), "On the modeling of stability problems for thin plates with functionally graded structure", Thin Wall. Struct., 49(5), 627-635. https://doi.org/10.1016/j.tws.2010.09.005
  14. Jha, D.K., Kant, T. and Singh, R.K. (2012), "Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates", Nucl. Eng. Des., 250, 8-13. https://doi.org/10.1016/j.nucengdes.2012.05.001
  15. Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
  16. Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015a), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001
  17. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015b), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
  18. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
  19. Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  20. Lee, Y.Y., Zhao, X. and Reddy, J.N. (2010), "Postbuckling analysis of functionally graded plates subject to compressive and thermal loads", Comput. Meth. Appl. Mech. Eng., 199(25), 1645-1653. https://doi.org/10.1016/j.cma.2010.01.008
  21. Lu, C.F., Lim, C.W. and Chen, W. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  22. Lu, P., He, L., Lee, H. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
  23. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B, 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089
  24. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C, Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3d sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B: Eng., 43, 711-725.
  25. Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83(1), 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004
  26. Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  27. Shaat, M., Mahmoud, F.F., Alieldin, S.S. and Alshorbagy, A.E. (2013), "Finite element analysis of functionally graded nanoscale films", Finite Elem. Anal. Des., 74, 41-52. https://doi.org/10.1016/j.finel.2013.05.012
  28. Shaat, M., Mahmoud, F.F., Alshorbagy, A.E., Alieldin, S.S. and Meletis, E.I. (2012), "Size-dependent analysis of functionally graded ultra-thin films", Struct. Eng. Mech., 44(4), 431-448. https://doi.org/10.12989/sem.2012.44.4.431
  29. Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", Finite Elem. Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001
  30. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates - Analytical solutions", Euro. J. Mech. A/Solid., 47, 349 - 361. https://doi.org/10.1016/j.euromechsol.2014.06.003
  31. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070
  32. Taj, M.G., Chakrabarti, A. and Sheikh, A.H. (2013), "Analysis of functionally graded plates using higher order shear deformation theory", Appl. Math. Model., 37(18), 8484-8494. https://doi.org/10.1016/j.apm.2013.03.058
  33. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
  34. Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019
  35. Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plate", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  36. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  37. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories". Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  38. Yang, J. and Shen, H.S. (2001), "Dynamic response of initially stressed functionally graded rectangular thin plates", Compos. Struct., 54(4), 497-508. https://doi.org/10.1016/S0263-8223(01)00122-2
  39. Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 1- Deflection and stresses", Int. J. Solid. Struct., 42(18), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015
  40. Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2- Buckling and free vibration", Int. J. Solid. Struct., 42(18), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
  41. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
  42. Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 5(11), 869-880.

Cited by

  1. Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations vol.66, pp.6, 2017, https://doi.org/10.12989/sem.2018.66.6.729
  2. Concerning the tensor-based flexural formulation: Theory vol.70, pp.4, 2017, https://doi.org/10.12989/sem.2019.70.4.445
  3. Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
  4. Free Vibration Analysis of Simply Supported P-FGM Nanoplate Using a Nonlocal Four Variables Shear Deformation Plate Theory vol.69, pp.4, 2017, https://doi.org/10.2478/scjme-2019-0039
  5. Variational approximate for high order bending analysis of laminated composite plates vol.73, pp.1, 2017, https://doi.org/10.12989/sem.2020.73.1.097
  6. Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory vol.7, pp.2, 2017, https://doi.org/10.12989/aas.2020.7.2.115
  7. Concerning the tensor-based flexural formulation: Applications vol.77, pp.6, 2021, https://doi.org/10.12989/sem.2021.77.6.765