Acknowledgement
Supported by : Vietnam National Foundation for Science and Technology Development (NAFOSTED)
References
- Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A firstorder shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Shams Eng. J.l, 2(1), 53-62. https://doi.org/10.1016/j.asej.2011.05.003
- Apuzzo, A., Barretta, R. and Luciano, R. (2015), "Some analytical solutions of functionally graded Kirchhoff plates", Compos. Part B: Eng., 68, 266-269. https://doi.org/10.1016/j.compositesb.2014.08.048
- Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
- Barretta, R. and Luciano, R. (2014), "Exact solutions of isotropic viscoelastic functionally graded Kirchhoff plates", Compos. Struct., 118, 448-454. https://doi.org/10.1016/j.compstruct.2014.07.044
- Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
- Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005
- Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load - Part I: Analysis", Int. J. Solid. Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011
- Della Croce, L. and Venini, P. (2004), "Finite elements for functionally graded Reissner-Mindlin plates", Comput. Meth. Appl. Mech. Eng., 193(9), 705-725. https://doi.org/10.1016/j.cma.2003.09.014
- Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002
- Hosseini-Hashemi, S., Taher, H.R.D., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008
- Jedrysiak, J. and Michalak, B. (2011), "On the modeling of stability problems for thin plates with functionally graded structure", Thin Wall. Struct., 49(5), 627-635. https://doi.org/10.1016/j.tws.2010.09.005
- Jha, D.K., Kant, T. and Singh, R.K. (2012), "Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates", Nucl. Eng. Des., 250, 8-13. https://doi.org/10.1016/j.nucengdes.2012.05.001
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
- Kolahchi, R., Bidgoli, A.M.M. and Heydari, M.M. (2015a), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55(5), 1001-1014. https://doi.org/10.12989/sem.2015.55.5.1001
- Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015b), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
- Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Lee, Y.Y., Zhao, X. and Reddy, J.N. (2010), "Postbuckling analysis of functionally graded plates subject to compressive and thermal loads", Comput. Meth. Appl. Mech. Eng., 199(25), 1645-1653. https://doi.org/10.1016/j.cma.2010.01.008
- Lu, C.F., Lim, C.W. and Chen, W. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
- Lu, P., He, L., Lee, H. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B, 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C, Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3d sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B: Eng., 43, 711-725.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83(1), 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Shaat, M., Mahmoud, F.F., Alieldin, S.S. and Alshorbagy, A.E. (2013), "Finite element analysis of functionally graded nanoscale films", Finite Elem. Anal. Des., 74, 41-52. https://doi.org/10.1016/j.finel.2013.05.012
- Shaat, M., Mahmoud, F.F., Alshorbagy, A.E., Alieldin, S.S. and Meletis, E.I. (2012), "Size-dependent analysis of functionally graded ultra-thin films", Struct. Eng. Mech., 44(4), 431-448. https://doi.org/10.12989/sem.2012.44.4.431
- Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", Finite Elem. Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001
- Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates - Analytical solutions", Euro. J. Mech. A/Solid., 47, 349 - 361. https://doi.org/10.1016/j.euromechsol.2014.06.003
- Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31. https://doi.org/10.1016/j.compstruct.2014.09.070
- Taj, M.G., Chakrabarti, A. and Sheikh, A.H. (2013), "Analysis of functionally graded plates using higher order shear deformation theory", Appl. Math. Model., 37(18), 8484-8494. https://doi.org/10.1016/j.apm.2013.03.058
- Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
- Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019
- Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plate", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories". Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Yang, J. and Shen, H.S. (2001), "Dynamic response of initially stressed functionally graded rectangular thin plates", Compos. Struct., 54(4), 497-508. https://doi.org/10.1016/S0263-8223(01)00122-2
- Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 1- Deflection and stresses", Int. J. Solid. Struct., 42(18), 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015
- Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2- Buckling and free vibration", Int. J. Solid. Struct., 42(18), 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
- Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 5(11), 869-880.
Cited by
- Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations vol.66, pp.6, 2017, https://doi.org/10.12989/sem.2018.66.6.729
- Concerning the tensor-based flexural formulation: Theory vol.70, pp.4, 2017, https://doi.org/10.12989/sem.2019.70.4.445
- Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
- Free Vibration Analysis of Simply Supported P-FGM Nanoplate Using a Nonlocal Four Variables Shear Deformation Plate Theory vol.69, pp.4, 2017, https://doi.org/10.2478/scjme-2019-0039
- Variational approximate for high order bending analysis of laminated composite plates vol.73, pp.1, 2017, https://doi.org/10.12989/sem.2020.73.1.097
- Bending response of functionally graded piezoelectric plates using a two-variable shear deformation theory vol.7, pp.2, 2017, https://doi.org/10.12989/aas.2020.7.2.115
- Concerning the tensor-based flexural formulation: Applications vol.77, pp.6, 2021, https://doi.org/10.12989/sem.2021.77.6.765