DOI QR코드

DOI QR Code

Reconstruction of structured models using incomplete measured data

  • Yu, Yan (School of Mathematical Sciences, Dalian University of Technology) ;
  • Dong, Bo (School of Mathematical Sciences, Dalian University of Technology) ;
  • Yu, Bo (School of Mathematical Sciences, Dalian University of Technology)
  • 투고 : 2016.07.11
  • 심사 : 2017.01.03
  • 발행 : 2017.05.10

초록

The model updating problems, which are to find the optimal approximation to the discrete quadratic model obtained by the finite element method, are critically important to the vibration analysis. In this paper, the structured model updating problem is considered, where the coefficient matrices are required to be symmetric and positive semidefinite, represent the interconnectivity of elements in the physical configuration and minimize the dynamics equations, and furthermore, due to the physical feasibility, the physical parameters should be positive. To the best of our knowledge, the model updating problem involving all these constraints has not been proposed in the existed literature. In this paper, based on the semidefinite programming technique, we design a general-purpose numerical algorithm for solving the structured model updating problems with incomplete measured data and present some numerical results to demonstrate the effectiveness of our method.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. Bai, Z.J. (2013), "Constructing the physical parameters of a damped vibrating system from eigendata", Lin. Algebra Appl., 428(2-3), 625-656.
  2. Bai, Z.J., Chu, D. and Sun, D. (2007), "A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure", SIAM J. Scientf. Comput., 29(6), 2531-2561. https://doi.org/10.1137/060656346
  3. Bai, Z.J., Datta, B.N. and Wang, J. (2010), "Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems: A new optimization approach", Mech. Syst. Signal Pr., 24(3), 766-783. https://doi.org/10.1016/j.ymssp.2009.09.014
  4. Baruch, M. (1978), "Optimization procedure to correct stiffness and fexibility matrices using vibration data", AIAA J., 16, 1208-1210. https://doi.org/10.2514/3.61032
  5. Baruch, M. (1983), "Improvement of a large analytical model using test data", AIAA J., 21, 1168-1173. https://doi.org/10.2514/3.60140
  6. Brahma, S. and Datta, B. (2009), "An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating structures", J. Sound Vib., 324(3), 471-489. https://doi.org/10.1016/j.jsv.2009.02.020
  7. Chen, J.C. and Garbat, J.A. (1980), "Analytical model improvement using modal test results", AIAA J., 18(6), 684-690. https://doi.org/10.2514/3.50805
  8. Chen, M.X. (2014), "An augmented Lagrangian dual optimization approach to the H-weighted model updating problem", J. Comput. Appl. Math., 29(6), 111-120.
  9. Chu, M.T. (1998), "Inverse eigenvalue problems", SIAM Rev., 40(1), 1-39. https://doi.org/10.1137/S0036144596303984
  10. Chu, M.T. and Golub, G.H. (2005), Inverse eigenvalue problems: theory, algorithms, and applications, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, USA.
  11. Chu, M.T., Del Buono, N. and Yu, B. (2007), "Structured quadratic inverse eigenvalue problem. I. Serially linked systems", SIAM J. Scienti. Comput., 29(6), 2668-2685. https://doi.org/10.1137/060672510
  12. Datta, B.N. (2002), "Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems", Mech. Syst. Signal Pr., 16, 83-96. https://doi.org/10.1006/mssp.2001.1443
  13. Dong, B., Lin, M.M. and Chu, M.T. (2009), "Parameter reconstruction of vibration systems from partial eigeninformation", J. Sound Vib., 327(3-5), 391-401. https://doi.org/10.1016/j.jsv.2009.06.026
  14. Friswell, M.I. and Mottershead, J.E. (1995), Solid Mechanics and its Applications, Vol. 38, Kluwer Academic Publishers, Dordrecht, Holland.
  15. Gladwell, G.M.L. (2004), Solid Mechanics and its Applications, Vol. 119, Kluwer Academic Publishers, Dordrecht, Holland.
  16. Gohberg, I., Lancaster, P. and Rodman, L. (1982), Matrix polynomials, Academic Press Inc., New York, USA.
  17. Halevi, Y. and Bucher, I. (2003), "Model updating via weighted reference basis with connectivity constraints", J. Sound Vib., 265(3), 561-581. https://doi.org/10.1016/S0022-460X(02)01628-0
  18. Johnson, D. (2000), Advanced Structural Mechanics: an Introduction to Continuum Mechanics and Structural Dynamics, Reston, VA: T. Telford, London, UK.
  19. Kabe, A.M. (1985), "Stiffness matrix adjustment using mode data", AIAA J., 23, 1431-1436. https://doi.org/10.2514/3.9103
  20. Kautsky, J., Nichols, N.K. and Van Dooren, P. (1985), "Robust pole assignment in linear state feedback", Int. J. Control, 41(5), 1129-1155. https://doi.org/10.1080/0020718508961188
  21. Li, W. (2002), "A new method for structural model updating and joint stiffness identification", Mech. Syst. Signal Pr., 16(1), 155-167. https://doi.org/10.1006/mssp.2000.1339
  22. Lin, M.M., Dong, B. and Chu, M.T. (2010), "Semi-definite programming techniques for structured quadratic inverse eigenvalue problems", Numer. Algorithm., 53(4), 419-437. https://doi.org/10.1007/s11075-009-9309-9
  23. Moreno, J., Datta, B. and Raydan, M. (2009), "A symmetry preserving alternating projection method for matrix model updating", Mech. Syst. Signal Pr., 23(6), 1784-1791. https://doi.org/10.1016/j.ymssp.2008.06.011
  24. Mottershead, J. and Friswell, M. (1993), "Model updating in structural dynamics: A survey", J. Sound Vib., 167(2), 347-375. https://doi.org/10.1006/jsvi.1993.1340
  25. Mottershead, J.E., Link, M. and Friswell, M.I. (2011), "The sensitivity method in finite element model updating: A tutorial", Mech. Syst. Signal Pr., 25(7), 2275-2296. https://doi.org/10.1016/j.ymssp.2010.10.012
  26. Sako, B.H. and Kabe, A.M. (2005), "Direct least-squares formulation of a stiffness adjustment method", AIAA J., 43, 413-419. https://doi.org/10.2514/1.10826
  27. Wei, F.S. (1990), "Mass and stiffness interaction effects in analytical model modifiation", AIAA J., 28, 1686-1688. https://doi.org/10.2514/3.25269
  28. Yuan, Q. (2012), "Matrix linear variational inequality approach for finite element model updating", Mech. Syst. Signal Pr., 28, 507-516. https://doi.org/10.1016/j.ymssp.2011.09.016
  29. Yuan, Q. (2013), "Proximal-point method for finite element model updating problem", Mech. Syst. Signal Pr., 34(1-2), 47-56. https://doi.org/10.1016/j.ymssp.2012.08.006
  30. Zhao, Y.S., Zhang, B.B., An, G.P., Liu, Z.F. and Cai, L.G. (2016), "A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles", Struct. Eng. Mech., 57(1), 141-159. https://doi.org/10.12989/sem.2016.57.1.141
  31. Zimmerman, D. and Widengren, M. (1990), "Correcting finite element models using a symmetric eigenstructure assignment technique", AIAA J., 28, 1670-1676. https://doi.org/10.2514/3.25267