Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Bai, Z.J. (2013), "Constructing the physical parameters of a damped vibrating system from eigendata", Lin. Algebra Appl., 428(2-3), 625-656.
- Bai, Z.J., Chu, D. and Sun, D. (2007), "A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure", SIAM J. Scientf. Comput., 29(6), 2531-2561. https://doi.org/10.1137/060656346
- Bai, Z.J., Datta, B.N. and Wang, J. (2010), "Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems: A new optimization approach", Mech. Syst. Signal Pr., 24(3), 766-783. https://doi.org/10.1016/j.ymssp.2009.09.014
- Baruch, M. (1978), "Optimization procedure to correct stiffness and fexibility matrices using vibration data", AIAA J., 16, 1208-1210. https://doi.org/10.2514/3.61032
- Baruch, M. (1983), "Improvement of a large analytical model using test data", AIAA J., 21, 1168-1173. https://doi.org/10.2514/3.60140
- Brahma, S. and Datta, B. (2009), "An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating structures", J. Sound Vib., 324(3), 471-489. https://doi.org/10.1016/j.jsv.2009.02.020
- Chen, J.C. and Garbat, J.A. (1980), "Analytical model improvement using modal test results", AIAA J., 18(6), 684-690. https://doi.org/10.2514/3.50805
- Chen, M.X. (2014), "An augmented Lagrangian dual optimization approach to the H-weighted model updating problem", J. Comput. Appl. Math., 29(6), 111-120.
- Chu, M.T. (1998), "Inverse eigenvalue problems", SIAM Rev., 40(1), 1-39. https://doi.org/10.1137/S0036144596303984
- Chu, M.T. and Golub, G.H. (2005), Inverse eigenvalue problems: theory, algorithms, and applications, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, USA.
- Chu, M.T., Del Buono, N. and Yu, B. (2007), "Structured quadratic inverse eigenvalue problem. I. Serially linked systems", SIAM J. Scienti. Comput., 29(6), 2668-2685. https://doi.org/10.1137/060672510
- Datta, B.N. (2002), "Finite element model updating, eigenstructure assignment and eigenvalue embedding techniques for vibrating systems", Mech. Syst. Signal Pr., 16, 83-96. https://doi.org/10.1006/mssp.2001.1443
- Dong, B., Lin, M.M. and Chu, M.T. (2009), "Parameter reconstruction of vibration systems from partial eigeninformation", J. Sound Vib., 327(3-5), 391-401. https://doi.org/10.1016/j.jsv.2009.06.026
- Friswell, M.I. and Mottershead, J.E. (1995), Solid Mechanics and its Applications, Vol. 38, Kluwer Academic Publishers, Dordrecht, Holland.
- Gladwell, G.M.L. (2004), Solid Mechanics and its Applications, Vol. 119, Kluwer Academic Publishers, Dordrecht, Holland.
- Gohberg, I., Lancaster, P. and Rodman, L. (1982), Matrix polynomials, Academic Press Inc., New York, USA.
- Halevi, Y. and Bucher, I. (2003), "Model updating via weighted reference basis with connectivity constraints", J. Sound Vib., 265(3), 561-581. https://doi.org/10.1016/S0022-460X(02)01628-0
- Johnson, D. (2000), Advanced Structural Mechanics: an Introduction to Continuum Mechanics and Structural Dynamics, Reston, VA: T. Telford, London, UK.
- Kabe, A.M. (1985), "Stiffness matrix adjustment using mode data", AIAA J., 23, 1431-1436. https://doi.org/10.2514/3.9103
- Kautsky, J., Nichols, N.K. and Van Dooren, P. (1985), "Robust pole assignment in linear state feedback", Int. J. Control, 41(5), 1129-1155. https://doi.org/10.1080/0020718508961188
- Li, W. (2002), "A new method for structural model updating and joint stiffness identification", Mech. Syst. Signal Pr., 16(1), 155-167. https://doi.org/10.1006/mssp.2000.1339
- Lin, M.M., Dong, B. and Chu, M.T. (2010), "Semi-definite programming techniques for structured quadratic inverse eigenvalue problems", Numer. Algorithm., 53(4), 419-437. https://doi.org/10.1007/s11075-009-9309-9
- Moreno, J., Datta, B. and Raydan, M. (2009), "A symmetry preserving alternating projection method for matrix model updating", Mech. Syst. Signal Pr., 23(6), 1784-1791. https://doi.org/10.1016/j.ymssp.2008.06.011
- Mottershead, J. and Friswell, M. (1993), "Model updating in structural dynamics: A survey", J. Sound Vib., 167(2), 347-375. https://doi.org/10.1006/jsvi.1993.1340
- Mottershead, J.E., Link, M. and Friswell, M.I. (2011), "The sensitivity method in finite element model updating: A tutorial", Mech. Syst. Signal Pr., 25(7), 2275-2296. https://doi.org/10.1016/j.ymssp.2010.10.012
- Sako, B.H. and Kabe, A.M. (2005), "Direct least-squares formulation of a stiffness adjustment method", AIAA J., 43, 413-419. https://doi.org/10.2514/1.10826
- Wei, F.S. (1990), "Mass and stiffness interaction effects in analytical model modifiation", AIAA J., 28, 1686-1688. https://doi.org/10.2514/3.25269
- Yuan, Q. (2012), "Matrix linear variational inequality approach for finite element model updating", Mech. Syst. Signal Pr., 28, 507-516. https://doi.org/10.1016/j.ymssp.2011.09.016
- Yuan, Q. (2013), "Proximal-point method for finite element model updating problem", Mech. Syst. Signal Pr., 34(1-2), 47-56. https://doi.org/10.1016/j.ymssp.2012.08.006
- Zhao, Y.S., Zhang, B.B., An, G.P., Liu, Z.F. and Cai, L.G. (2016), "A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles", Struct. Eng. Mech., 57(1), 141-159. https://doi.org/10.12989/sem.2016.57.1.141
- Zimmerman, D. and Widengren, M. (1990), "Correcting finite element models using a symmetric eigenstructure assignment technique", AIAA J., 28, 1670-1676. https://doi.org/10.2514/3.25267