References
-
Arellano, M.T., Crouzeix, L., Douchin, B., Collombet, F., Moreno, H.H. and Velazquez, J.G. (2010), "Strain field measurement of filament-wound composites at
${\pm}55^{\circ}$ using digital image correlation: an approach for unit cells employing flat specimens", Compos. Struct., 92(10), 2457-2464. https://doi.org/10.1016/j.compstruct.2010.02.014 - Henry, T.C., Bakis, C.E. and Smith, E.C. (2015), "Determination of effective ply-level properties of filament wound composite tubes loaded in compression", Jo. Test. Eval., 43(1), 96-107. https://doi.org/10.1520/JTE20130159
- Hernandez-Moreno, H., Douchin, B., Collombet, F., Choqueuse, D. and Davies, P. (2008), "Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure", Compos. Sci. Technol., 68(3-4), 1015-1024. https://doi.org/10.1016/j.compscitech.2007.07.020
- Jensen, D.W. and Pai, S.P. (1993), "Influence of local fiber undulations on the global buckling behavior of filament-wound cylinders", J. Reinf. Plast. Compos., 12(8), 865-875. https://doi.org/10.1177/073168449301200803
- Krishnan, P., Majid, M.S.A., Afendi, M., Gibson, A.G. and Marzuki, H.F.A. (2015), "Effects of winding angle on the behaviour of glass/epoxy pipes under multiaxial cyclic loading", Mater. Des., 88, 196-206. https://doi.org/10.1016/j.matdes.2015.08.153
- Li, J., Wen, W. and Cui, H. (2008), "Predicting stiffness of filament-wound composite based on fourier series", Fuhe Cailiao Xuebao/acta Materiae Compositae Sinica, 25(5), 169-174.
- Majid, M.A., Assaleh, T.A., Gibson, A.G., Hale, J.M., Fahrer, A., Rookus, C.A.P. and Hekman, M. (2011), "Ultimate elastic wall stress (uews) test of glass fibre reinforced epoxy (gre) pipe", Compos. Part A Appl. Sci. Manuf., 42(10), 1500-1508. https://doi.org/10.1016/j.compositesa.2011.07.001
- Martins, L.A.L., Bastian, F. L., and Netto, T. A. (2014), "Reviewing some design issues for filament wound composite tubes", Materials & Design, 55(6), 242-249. https://doi.org/10.1016/j.matdes.2013.09.059
- Martins, L.A.L., Bastian, F.L. and Netto, T.A. (2012), "Structural and functional failure pressure of filament wound composite tubes", Mater. Des., 36, 779-787. https://doi.org/10.1016/j.matdes.2011.11.029
- Martins, L.A.L., Bastian, F.L. and Netto, T.A. (2013), "The effect of stress ratio on the fracture morphology of filament wound composite tubes", Mater. Des., 49, 471-484. https://doi.org/10.1016/j.matdes.2013.01.026
- Mertiny, P., Ellyin, F. and Hothan, A. (2004), "An experimental investigation on the effect of multi-angle filament winding on the strength of tubular composite structures", Compos. Sci. Technol., 64(1), 1-9. https://doi.org/10.1016/S0266-3538(03)00198-2
- Morozov, E.V. (2006), "The effect of filament-winding mosaic patterns on the strength of thin-walled composite shells", Compos. Struct., 76(1-2), 123-129. https://doi.org/10.1016/j.compstruct.2006.06.018
- Pai, S.P. and Jensen, D.W. (2001), "Influence of fiber undulations on buckling of thin filament-wound cylinders in axial compression", J. Aerosp. Eng., 14(1), 12-20. https://doi.org/10.1061/(ASCE)0893-1321(2001)14:1(12)
- Rahman, H. and Mian, H.H. (2011), "Influence of mosaic patterns on the structural integrity of filament wound composite pressure vessels", Int. J. Struct. Integ., 66(3), 185-188.
- Ramirez, J.P.B., Halm, D., Grandidier, J.C. and Villalonga, S. (2014), "A fixed directions damage model for composite materials dedicated to hyperbaric type iv hydrogen storage vessel-part i: model formulation and identification", Int. J. Hydrog. Energy, 40(38), 13165-13173. https://doi.org/10.1016/j.ijhydene.2014.08.071
- Ramirez, J.P.B., Halm, D., Grandidier, J.C. and Villalonga, S. (2015b), "A fixed directions damage model for composite materials dedicated to hyperbaric type iv hydrogen storage vessel - part ii: validation on notched structures", Int. J. Hydrog. Energy, 40(38), 13174-13182. https://doi.org/10.1016/j.ijhydene.2015.06.014
- Ramirez, J.P.B., Halm, D., Grandidier, J.C., Villalonga, S. and Nony, F. (2015a), "Experimental study of the thermomechanical behavior of wound notched structures", Int. J. Hydrog. Energy, 40(38), 13148-13159. https://doi.org/10.1016/j.ijhydene.2015.05.156
- Rousseau, J., Perreux, D. and Verdiere, N. (1999), "The influence of winding patterns on the damage behaviour of filament-wound pipes", Compos. Sci. Technol., 59(9), 1439-1449. https://doi.org/10.1016/S0266-3538(98)00184-5
- Sun, J. and Qi, X. (2006), "Elastic modulus prediction of filament winding composites based on meso-scale filament undulation property analysis", Fuhe Cailiao Xuebao/acta Materiae Compositae Sinica, 23(6), 192-198.
- Uddin, M.S., Morozov, E.V. and Shankar, K. (2014), "The effect of filament winding mosaic pattern on the stress state of filament wound composite flywheel disk", Compos. Struct., 107(1), 260-275. https://doi.org/10.1016/j.compstruct.2013.07.004
- Wen, W.D., Li, J., Cui, H.T., Xu, Y. and Zhang, H.J. (2011), "Strain characteristic of filament wound composite cylinder under axial loading", Adv. Mater. Res., 415-417, 395-398. https://doi.org/10.4028/www.scientific.net/AMR.415-417.395
- Zindel, D. and Bakis, C.E. (2011), "Nonlinear micromechanical model of filament-wound composites considering fiber undulation", Mech. Compos. Mater., 47(1), 73-94. https://doi.org/10.1007/s11029-011-9188-8
Cited by
- A new constitutive model to predict effective elastic properties of plain weave fabric composites vol.77, pp.5, 2017, https://doi.org/10.12989/sem.2021.77.5.651