DOI QR코드

DOI QR Code

Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations

  • Shen, Chuangshi (School of Mechanics, Civil and Architecture, Northwestern Polytechnical University) ;
  • Han, Xiaoping (School of Mechanics, Civil and Architecture, Northwestern Polytechnical University)
  • Received : 2016.05.02
  • Accepted : 2016.10.05
  • Published : 2017.05.10

Abstract

A meso-scale model is proposed to study filament-wound composites with fiber undulations and crossovers. First, the crossover and undulation region is classified as the circumferential undulation and the helical undulation. Next, the two undulations are separately regarded as a series of sub-models to describe the meso-structure of undulations by using meso-parameters such as fiber orientation, fiber inclination angle, resin rich area, fiber volume fraction and bundle cross section. With the meso-structure model and the classic laminate theory, a method for calculating the stiffness of filament wound composites is eventually established. The effects of the fiber inclination angle, the fiber and resin volume fraction and the resin rich area on the stiffness are studied. The numerical results show that the elastic moduli for the circumferential undulation region decrease to a great extent as compared with that of the helical undulation region. Moreover, significant decrease in the elastic and shear moduli and increase in the Poisson's ratio are also found for the resin rich area. In addition, thickness and bundle section have evident effect on the equivalent stiffness of the fiber crossover and the undulation region.

Keywords

References

  1. Arellano, M.T., Crouzeix, L., Douchin, B., Collombet, F., Moreno, H.H. and Velazquez, J.G. (2010), "Strain field measurement of filament-wound composites at ${\pm}55^{\circ}$ using digital image correlation: an approach for unit cells employing flat specimens", Compos. Struct., 92(10), 2457-2464. https://doi.org/10.1016/j.compstruct.2010.02.014
  2. Henry, T.C., Bakis, C.E. and Smith, E.C. (2015), "Determination of effective ply-level properties of filament wound composite tubes loaded in compression", Jo. Test. Eval., 43(1), 96-107. https://doi.org/10.1520/JTE20130159
  3. Hernandez-Moreno, H., Douchin, B., Collombet, F., Choqueuse, D. and Davies, P. (2008), "Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure", Compos. Sci. Technol., 68(3-4), 1015-1024. https://doi.org/10.1016/j.compscitech.2007.07.020
  4. Jensen, D.W. and Pai, S.P. (1993), "Influence of local fiber undulations on the global buckling behavior of filament-wound cylinders", J. Reinf. Plast. Compos., 12(8), 865-875. https://doi.org/10.1177/073168449301200803
  5. Krishnan, P., Majid, M.S.A., Afendi, M., Gibson, A.G. and Marzuki, H.F.A. (2015), "Effects of winding angle on the behaviour of glass/epoxy pipes under multiaxial cyclic loading", Mater. Des., 88, 196-206. https://doi.org/10.1016/j.matdes.2015.08.153
  6. Li, J., Wen, W. and Cui, H. (2008), "Predicting stiffness of filament-wound composite based on fourier series", Fuhe Cailiao Xuebao/acta Materiae Compositae Sinica, 25(5), 169-174.
  7. Majid, M.A., Assaleh, T.A., Gibson, A.G., Hale, J.M., Fahrer, A., Rookus, C.A.P. and Hekman, M. (2011), "Ultimate elastic wall stress (uews) test of glass fibre reinforced epoxy (gre) pipe", Compos. Part A Appl. Sci. Manuf., 42(10), 1500-1508. https://doi.org/10.1016/j.compositesa.2011.07.001
  8. Martins, L.A.L., Bastian, F. L., and Netto, T. A. (2014), "Reviewing some design issues for filament wound composite tubes", Materials & Design, 55(6), 242-249. https://doi.org/10.1016/j.matdes.2013.09.059
  9. Martins, L.A.L., Bastian, F.L. and Netto, T.A. (2012), "Structural and functional failure pressure of filament wound composite tubes", Mater. Des., 36, 779-787. https://doi.org/10.1016/j.matdes.2011.11.029
  10. Martins, L.A.L., Bastian, F.L. and Netto, T.A. (2013), "The effect of stress ratio on the fracture morphology of filament wound composite tubes", Mater. Des., 49, 471-484. https://doi.org/10.1016/j.matdes.2013.01.026
  11. Mertiny, P., Ellyin, F. and Hothan, A. (2004), "An experimental investigation on the effect of multi-angle filament winding on the strength of tubular composite structures", Compos. Sci. Technol., 64(1), 1-9. https://doi.org/10.1016/S0266-3538(03)00198-2
  12. Morozov, E.V. (2006), "The effect of filament-winding mosaic patterns on the strength of thin-walled composite shells", Compos. Struct., 76(1-2), 123-129. https://doi.org/10.1016/j.compstruct.2006.06.018
  13. Pai, S.P. and Jensen, D.W. (2001), "Influence of fiber undulations on buckling of thin filament-wound cylinders in axial compression", J. Aerosp. Eng., 14(1), 12-20. https://doi.org/10.1061/(ASCE)0893-1321(2001)14:1(12)
  14. Rahman, H. and Mian, H.H. (2011), "Influence of mosaic patterns on the structural integrity of filament wound composite pressure vessels", Int. J. Struct. Integ., 66(3), 185-188.
  15. Ramirez, J.P.B., Halm, D., Grandidier, J.C. and Villalonga, S. (2014), "A fixed directions damage model for composite materials dedicated to hyperbaric type iv hydrogen storage vessel-part i: model formulation and identification", Int. J. Hydrog. Energy, 40(38), 13165-13173. https://doi.org/10.1016/j.ijhydene.2014.08.071
  16. Ramirez, J.P.B., Halm, D., Grandidier, J.C. and Villalonga, S. (2015b), "A fixed directions damage model for composite materials dedicated to hyperbaric type iv hydrogen storage vessel - part ii: validation on notched structures", Int. J. Hydrog. Energy, 40(38), 13174-13182. https://doi.org/10.1016/j.ijhydene.2015.06.014
  17. Ramirez, J.P.B., Halm, D., Grandidier, J.C., Villalonga, S. and Nony, F. (2015a), "Experimental study of the thermomechanical behavior of wound notched structures", Int. J. Hydrog. Energy, 40(38), 13148-13159. https://doi.org/10.1016/j.ijhydene.2015.05.156
  18. Rousseau, J., Perreux, D. and Verdiere, N. (1999), "The influence of winding patterns on the damage behaviour of filament-wound pipes", Compos. Sci. Technol., 59(9), 1439-1449. https://doi.org/10.1016/S0266-3538(98)00184-5
  19. Sun, J. and Qi, X. (2006), "Elastic modulus prediction of filament winding composites based on meso-scale filament undulation property analysis", Fuhe Cailiao Xuebao/acta Materiae Compositae Sinica, 23(6), 192-198.
  20. Uddin, M.S., Morozov, E.V. and Shankar, K. (2014), "The effect of filament winding mosaic pattern on the stress state of filament wound composite flywheel disk", Compos. Struct., 107(1), 260-275. https://doi.org/10.1016/j.compstruct.2013.07.004
  21. Wen, W.D., Li, J., Cui, H.T., Xu, Y. and Zhang, H.J. (2011), "Strain characteristic of filament wound composite cylinder under axial loading", Adv. Mater. Res., 415-417, 395-398. https://doi.org/10.4028/www.scientific.net/AMR.415-417.395
  22. Zindel, D. and Bakis, C.E. (2011), "Nonlinear micromechanical model of filament-wound composites considering fiber undulation", Mech. Compos. Mater., 47(1), 73-94. https://doi.org/10.1007/s11029-011-9188-8

Cited by

  1. A new constitutive model to predict effective elastic properties of plain weave fabric composites vol.77, pp.5, 2017, https://doi.org/10.12989/sem.2021.77.5.651