References
- J. Lipozencic and Z. Bukvic Mokos, "Dermatologic lasers in the treatment of aging skin," Acta Dermatovenerol Croat. 18, 176-180 (2010).
- H. J. Laubach, Z. Tannous, R. R. Anderson, and D. Manstein, "Skin responses to fractional photothermolysis," Lasers Surg. Med. 38, 142-149 (2006). https://doi.org/10.1002/lsm.20254
- R. G. Geronemus, "Fractional photothermolysis: current and future applications," Lasers Surg. Med. 38, 169-176 (2006). https://doi.org/10.1002/lsm.20310
- K. D. Polder and S. Bruce, "Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: a pilot study," Dermatol. Surg. 38, 199-206 (2012). https://doi.org/10.1111/j.1524-4725.2011.02178.x
- D. F. Spandau, D. A. Lewis, A. K. Somani, and J. B. Travers, "Fractionated laser resurfacing corrects the inappropriate UVB response in geriatric skin," J. Invest Dermatol. 132, 1591-1596 (2012). https://doi.org/10.1038/jid.2012.29
- J. Gye, S. K. Ahn, J. E. Kwon, and S. P. Hong, "Use of fractional CO2 laser decreases the risk of skin cancer development during ultraviolet exposure in hairless mice," Dermatol. Surg. 41, 378-386 (2015). https://doi.org/10.1097/DSS.0000000000000298
- R. R. Anderson, "Lasers for dermatology and skin biology," J. Invest Dermatol. 133, E21-23 (2013). https://doi.org/10.1038/skinbio.2013.181
- C. P. Barham, R. L. Jones, L. R. Biddlestone, R. H. Hardwick, N. A. Shepherd, and H. Barr, "Photothermal laser ablation of Barrett's oesophagus: endoscopic and histological evidence of squamous re-epithelialisation," Gut. 41, 281-284 (1997). https://doi.org/10.1136/gut.41.3.281
- R. L. Konger, Z. Xu, R. P. Sahu, B. M. Rashid, S. R. Mehta, D. R. Mohamed, S. C. DaSilva-Arnold, J. R. Bradish, S. J. Warren, and Y. L. Kim, "Spatiotemporal assessments of dermal hyperemia enable accurate prediction of experimental cutaneous carcinogenesis as well as chemopreventive activity," Cancer Res. 73, 150-159 (2013).
- L. M. Field, "The superiority of dermabrasion over laser abrasion in the prophylaxis of malignant and premalignant disease," Dermatol. Surg. 33, 258-259 (2007).
- H. H. Pennes, "Analysis of tissue and arterial blood temperatures in the resting human forearm," J. Appl. Physiol. 1, 93-122 (1948). https://doi.org/10.1152/jappl.1948.1.2.93
- T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, "The Bioheat Equation," in Fundamentals of Heat and Mass Transfer. 183-187 (Wiley, 2011).
- A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D: Appl. Phys. 38, 2543-2555 (2005). https://doi.org/10.1088/0022-3727/38/15/004
- A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500 nm," Opt. Spectrosc. 99, 836-842 (2005). https://doi.org/10.1134/1.2135863
- D. Ratovoson, F. Jourdan, and V. Huon, "A study of heat distribution in human skin: use of Infrared Thermography," EPJ Web Conf. 6, 21008 (2010).
- Z. Ostrowski, P. Bulinski, W. Adamczyk, and A. J. Nowak, "Modelling and Validation of transient heat transfer processes in human skin undergoing local cooling," Prz. Elektrotechniczny. 91, 76-79 (2015).
- J. Z. Wensheng Shen and Fuqian Yang, "Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue," Math Comput Modell. 41, 1251-1265 (2005). https://doi.org/10.1016/j.mcm.2004.09.006
- S. M. Lin and C. Y. Li, "Analytical solutions of non-Fourier bio-heat conductions for skin subjected to pulsed laser heating," Int. J. Therm Sci. 110, 146-158 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.06.034
- C. M. Collins, M. B. Smith, and R. Turner, "Model of local temperature changes in brain upon functional activation," J. Appl. Physiol. 97, 2051-2055 (2004). https://doi.org/10.1152/japplphysiol.00626.2004
- J. Sapi, L. Kovacs, D. A. Drexler, P. Kocsis, D. Gajari, and Z. Sapi, "Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy," PLoS. One. 10, e0142190 (2015). https://doi.org/10.1371/journal.pone.0142190
- H. Z. Alagha and M. Gulsoy, "Photothermal ablation of liver tissue with 1940-nm thulium fiber laser: an ex vivo study on lamb liver," J. Biomed Opt. 21, 15007 (2016). https://doi.org/10.1117/1.JBO.21.1.015007
- A. B. Niwa Massaki, S. Eimpunth, S. G. Fabi, I. Guiha, W. Groff, and R. Fitzpatrick, "Treatment of melasma with the 1,927-nm fractional thulium fiber laser: a retrospective analysis of 20 cases with long-term follow-up," Lasers Surg. Med. 45, 95-101 (2013). https://doi.org/10.1002/lsm.22100
- M. Rieken and A. Bachmann, "Laser treatment of benign prostate enlargement--which laser for which prostate?," Nat Rev. Urol. 11, 142-152 (2014). https://doi.org/10.1038/nrurol.2014.23
- P. Ghasri, S. Admani, A. Petelin, and C. B. Zachary, "Treatment of actinic cheilitis using a 1,927-nm thulium fractional laser," Dermatol. Surg. 38, 504-507 (2012). https://doi.org/10.1111/j.1524-4725.2011.02262.x
- L. Miller, V. Mishra, S. Alsaad, D. Winstanley, T. Blalock, C. Tingey, J. Qiu, S. Romine, and E. V. Ross, "Clinical evaluation of a non-ablative 1940 nm fractional laser," J. Drugs Dermatol. 13, 1324-1329 (2014).
- J. A. Brauer, D. H. McDaniel, B. S. Bloom, K. K. Reddy, L. J. Bernstein, and R. G. Geronemus, "Nonablative 1927 nm fractional resurfacing for the treatment of facial photopigmentation," J. Drugs Dermatol. 13, 1317-1322 (2014).
- K. Calabro, A. Curtis, J. R. Galarneau, T. Krucker, and I. J. Bigio, "Gender variations in the optical properties of skin in murine animal models," J. Biomed Opt. 16, 011008 (2011). https://doi.org/10.1117/1.3525565
- J. S. Orringer, L. Rittie, D. Baker, J. J. Voorhees, and G. Fisher, "Molecular mechanisms of nonablative fractionated laser resurfacing," Br. J. Dermatol. 163, 757-768 (2010). https://doi.org/10.1111/j.1365-2133.2010.09998.x
- K. D. Polder, A. Harrison, L. E. Eubanks, and S. Bruce, "1,927-nm fractional thulium fiber laser for the treatment of nonfacial photodamage: a pilot study," Dermatol. Surg. 37, 342-348 (2011). https://doi.org/10.1111/j.1524-4725.2011.01884.x
- E. T. Weiss, J. A. Brauer, R. Anolik, K. K. Reddy, J. K. Karen, E. K. Hale, L. A. Brightman, L. Bernstein, and R. G. Geronemus, "1927-nm fractional resurfacing of facial actinic keratoses: a promising new therapeutic option," J. Am. Acad. Dermatol. 68, 98-102 (2013). https://doi.org/10.1016/j.jaad.2012.05.033
- D. B. Vasily, M. E. Cerino, E. M. Ziselman, and S. T. Zeina, "Non-ablative fractional resurfacing of surgical and post-traumatic scars," J. Drugs Dermatol. 8, 998-1005 (2009).
- H. Ikeda, L. J. Old, and R. D. Schreiber, "The roles of IFN gamma in protection against tumor development and cancer immunoediting," Cytokine Growth Factor Rev. 13, 95-109 (2002). https://doi.org/10.1016/S1359-6101(01)00038-7
- Y. M. Ma, T. Sun, Y. X. Liu, N. Zhao, Q. Gu, D. F. Zhang, S. Qie, C. S. Ni, Y. Liu, and B. C. Sun, "A pilot study on acute inflammation and cancer: a new balance between IFN-gamma and TGF-beta in melanoma," J. Exp. Clin. Cancer Res. 28, 23 (2009). https://doi.org/10.1186/1756-9966-28-23
- S. B. Jakowlew, "Transforming growth factor-beta in cancer and metastasis," Cancer Metastasis Rev. 25, 435-457 (2006). https://doi.org/10.1007/s10555-006-9006-2
- I. P. Witz, "Yin-yang activities and vicious cycles in the tumor microenvironment," Cancer Res. 68, 9-13 (2008). https://doi.org/10.1158/0008-5472.CAN-07-2917
- I. P. Witz, "Tumor-microenvironment interactions: dangerous liaisons," Adv. Cancer Res. 100, 203-229 (2008).
- C. Wilmanns, D. Fan, C. A. O'Brian, C. D. Bucana, and I. J. Fidler, "Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5-fluorouracil," Int. J. Cancer. 52, 98-104 (1992). https://doi.org/10.1002/ijc.2910520118
Cited by
- Endoscopic non-ablative fractional laser therapy in an orthotopic colon tumour model vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19792-2
- Active thermodynamic contrast imaging for label-free tumor detection in a murine xenograft tumor model vol.8, pp.11, 2017, https://doi.org/10.1364/BOE.8.005013