Acknowledgement
Supported by : National Natural Science Foundation of China (NSFC)
References
- Abuel-Naga, H.M., Bergado, D.T. and Bouazza, A. (2007), "Thermally induced volume change and excess pore water pressure of soft Bangkok clay", Eng. Geol., 89(1-2), 144-154. https://doi.org/10.1016/j.enggeo.2006.10.002
- Abuel-Naga, H.M., Bergado, D.T., Bouazza, A. and Pender, M.J. (2009), "Thermal conductivity of soft Bangkok clay from laboratory and field measurements", Eng. Geol., 105(s3-4), 211-219. https://doi.org/10.1016/j.enggeo.2009.02.008
- Bai, B. (2006), "Fluctuation responses of saturated porous media subjected to cyclic thermal loading, Comput. Geotech., 33(4), 396-403. https://doi.org/10.1016/j.compgeo.2006.08.005
- Bai, B. and Chen, X.X. (2011), "Test apparatus for thermal consolidation of saturated soils and its application", Chinese J. Geotech. Eng., 33(6), 896-900. [In Chinese]
- Bai, B., Guo, L.J. and Han, S. (2014), "Pore pressure and consolidation of saturated silty clay induced by progressively heating/cooling", Mech. Mater., 75, 84-94. https://doi.org/10.1016/j.mechmat.2014.04.005
- Baldi, G., Hueckel, T. and Pellegrini, R. (1988), "Thermal volume changes of mineral-water system in low porosity clay soils", Can. Geotech. J., 25(4), 807-825. https://doi.org/10.1139/t88-089
- Blond, E., Schmitt, N. and Hild, F. (2003), "Responses of saturated porous media to cyclic thermal loading", Int. J. Numer. Anal. Methods Geomech., 27(11), 883-904. https://doi.org/10.1002/nag.301
- Burghignoli, A., Desideri, A. and Miliziano, S. (2000), "A laboratory study on the thermomechanical behaviour of clayey soils", Can. Geotech. J., 37(4), 764-780. https://doi.org/10.1139/t00-010
- Cekerevac, C. and Laloui, L. (2004), "Experimental study of thermal effects on the mechanical behavior of a clay", Int. J. Numer. Anal. Methods Geomech., 28(3), 209-228. https://doi.org/10.1002/nag.332
- Cheng, X.L. and Wang, J.H. (2016), "An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays", Geomech. Eng., Int. J., 11(3), 325-343. https://doi.org/10.12989/gae.2016.11.3.325
- Cui, Y.J., Sultan, N. and Delage, P. (2000), "A thermomechanical model for saturated clays", Can. Geotech. J., 37(6), 607-620. https://doi.org/10.1139/t99-111
- Cui, Y.J., Lu, Y.F. and Delage, P. (2005), "Field simulation of in situ water content and temperature changes due to ground-atmospheric interactions", Geotechnique, 55(7), 557-567. https://doi.org/10.1680/geot.2005.55.7.557
- Delage, P., Cui, Y.J. and Tang, A.M. (2010), "Clays in radioactive waste disposal", J. Rock Mech. Geotech. Eng., 2(2), 111-123. https://doi.org/10.3724/SP.J.1235.2010.00111
- Delage, P., Sultan, N. and Cui, Y.J. (2012), "On the thermal consolidation of Boom clay", Can. Geotech. J., 37(2), 343-354. https://doi.org/10.1139/t99-105
- Francois, B., Laloui, L. and Laurent, C. (2009), "Thermo-hydro-mechanical simulation of ATLAS in situ large scale test in Boom Clay", Comput. Geotech., 36(4), 626-640. https://doi.org/10.1016/j.compgeo.2008.09.004
- Ghabezloo, S. and Sulem, J. (2010), "Temperature induced pore fluid pressurization in geomaterials", Italian Geotech. J., 1, 29-43.
- Graham, J., Tanaka, N., Crilly, T. and Alfaro, M. (2001), "Modified Cam-Clay modeling of temperature effects in clays", Can. Geotech. J., 38 (3), 608-621. https://doi.org/10.1139/t00-125
- Hueckel, T. and Baldi, G. (1990), "Thermoplasticity of saturated clays: experimental constitutive study", J. Geotech. Eng., 116(12), 1778-1796. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1778)
- Hupers, A. and Kopf, A.J. (2009), "The thermal influence on the consolidation state of underthrust sediments from the Nankai margin and its implications for excess pore pressure", Earth Planet. Sci. Lett., 286(s1-2), 324-332. https://doi.org/10.1016/j.epsl.2009.05.047
- Le, T.M., Fatahi, B., Disfani, M. and Khabbaz, H. (2015), "Analyzing consolidation data to obtain elastic viscoplastic parameters of clay", Geomech. Eng., Int. J., 8(4), 559-594. https://doi.org/10.12989/gae.2015.8.4.559
- Monfared, M., Delage, P., Sulem, J., Mohajerani, M., Tang, A.M. and De Laure, E. (2011), "A new hollow cylinder triaxial cell to study the behavior of geo-materials with low permeability", Int. J. Rock Mech. Min. Sci., 48(4), 637-649. https://doi.org/10.1016/j.ijrmms.2011.02.017
- Sultan, N., Delage, P. and Cui, Y.J. (2002), "Temperature effects on the volume change behaviour of Boom clay", Eng. Geol., 64(2-3), 135-145. https://doi.org/10.1016/S0013-7952(01)00143-0
- Towhata, I., Kuntiwattanaku, P., Seko, I. and Ohishi, K. (1993), "Volume change of clays induced by heating as observed in consolidation tests", Soils Found., 33(4), 170-183. https://doi.org/10.3208/sandf1972.33.4_170
- Villar, M.V., Gomez-Espina, R. and Lloret, A. (2010), "Experimental investigation into temperature effect on hydro-mechanical behaviours of bentonite", J. Rock Mech. Geotech. Eng., 2(1), 71-78.
- Yavuzturk, C., Ksaibati, K. and Chiasson, A.D. (2005), "Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach", J. Mater. Civil Eng., 17(4), 465-475. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(465)
- Yilmaz, G. (2011), "The effects of temperature on the characteristics of kaolinite and bentonite", Sci. Res. Essays, 6(9), 1928-1939. https://doi.org/10.5897/SRE10.727
Cited by
- A 1D model considering the combined effect of strain-rate and temperature for soft soil vol.18, pp.2, 2017, https://doi.org/10.12989/gae.2019.18.2.133
- Thermo-Hydro-Mechanical Model for Unsaturated Clay Soils Based on Granular Solid Hydrodynamics Theory vol.19, pp.10, 2019, https://doi.org/10.1061/(asce)gm.1943-5622.0001498
- A Thermo-Hydro-Mechanical Coupling Analysis for the Contaminant Transport in a Bentonite Barrier with Variable Saturation vol.12, pp.11, 2017, https://doi.org/10.3390/w12113114
- Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation vol.23, pp.6, 2017, https://doi.org/10.12989/gae.2020.23.6.561
- An Improved Bingham Model and the Parameter Identification of Coal (Rock) Containing Water Based on the Fractional Calculus Theory vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/1996142
- The Equilibrium Time and Salt Expansion Characteristic of Sulfate Saline Soil upon Cooling vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/4318993
- The Promotion/Inhibition of the Seepage Transport of Copper Ions by Suspension-Colloidal Particles with Wide Size Gradation vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/9920415
- A Constitutive Model of Sandy Gravel Soil under Large-Sized Loading/Unloading Triaxial Tests vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/4998351
- Experimental Study on the Coupled Heat-Moisture-Heavy Metal Pollutant Transfer Process in Soils vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/5510217
- The Healing Process of the Joints between Buffer Material Blocks and the Influence on Solute Migration vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5524346
- Evaluation of the Adaptability of an EPB TBM to Tunnelling through Highly Variable Composite Strata vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/5558833
- Nonlinear Analysis of the Thaw Settlement in Ice-Rich Embankments vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/5561302
- A Displacement-Based Theory for Predicting the Support Force on the Shield Tunneling Surface in Sandy Soil Layers vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9980837
- Retaining Technology for Deep Foundation Pit Excavation Adjacent to High-Speed Railways Based on Deformation Control vol.9, pp.None, 2017, https://doi.org/10.3389/feart.2021.735315
- Disturbance Process of Sandy Gravel Stratum Caused by Shield Tunneling and Ground Settlement Analysis vol.9, pp.None, 2017, https://doi.org/10.3389/feart.2021.782927
- A Granular Thermodynamic Model to Describe the Temperature/Mechanical Characteristics of Sandy Soil vol.9, pp.None, 2017, https://doi.org/10.3389/feart.2021.796523
- A discrete scheme of the fluid motion equation based on the pore-scale SPH method vol.11, pp.7, 2017, https://doi.org/10.1063/5.0054444
- An analytical model for radial consolidation prediction under cyclic loading vol.26, pp.4, 2021, https://doi.org/10.12989/gae.2021.26.4.333
- Coupled thermo-hydro-mechanical process in buffer material and self-healing effects with joints vol.28, pp.9, 2021, https://doi.org/10.1007/s11771-021-4815-6
- Experimental study on the effect of temperature on marine clay consolidation with vertical sand drains vol.39, pp.11, 2017, https://doi.org/10.1080/1064119x.2020.1837309
- Thermodynamic modeling of stress-strain behavior of saturated sand considering temperature effect vol.11, pp.12, 2017, https://doi.org/10.1063/5.0073047
- Thermal Consolidation of Saturated Silty Clay Considering Different Temperature Paths: Experimental Study and Constitutive Modeling vol.22, pp.3, 2017, https://doi.org/10.1061/(asce)gm.1943-5622.0002294