References
- ASTM (2006), Standard Classification of Soils for Engineering Purposes, D 2487; Annual Book of ASTM standards, 04. 08, American Society for Testing and Materials, PA, USA.
- ASTM (2007), Standard Test Method for Particle-size Analysis of Soils, by Sieving/hydrometer Method, D422; 04. 08, American Society for Testing and Materials, PA, USA.
- ASTM (2010), Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, D4318; Annual Book of ASTM standards, 04. 08, American Society for Testing and Materials, PA, USA.
- ASTM (2011), Standard Test Method for One Dimensional Consolidation Properties of Soils. D 2435; 04. 08, American Society for Testing and Materials, PA, USA.
- ASTM (2014), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, D2166; 04. 08, American Society for Testing and Materials, PA, USA.
- Cheng, Z.C., Zhu, H., Xiong, M.G., Shi, B. and Gao, L. (2016), "Prediction of one-dimensional compression behavior of Nansha clay using fractional derivatives", Marine Georesour. Geotech. DOI: 0.1080/1064119X.2016.1217958
- Corthesy, R., Leite, M.H., Gill, D.E. and Gaudin, B. (2003), "Stress measurements in soft rocks", Eng. Geol., 69(3), 381-397. https://doi.org/10.1016/S0013-7952(03)00072-3
- Goodman, R.E. (1989), Introduction to Rock Mechanics, (2nd Ed.), pp. 179-200.
- Hooshmand, A., Amin-Far, M.H., Asghari, E. and Ahmadi, H. (2012), "Mechanical and physical characterization of Tabriz Marls, Iran", Geotech. Geol. Eng., 30(1), 219-232. https://doi.org/10.1007/s10706-011-9464-3
- Hornig, E.D. (2010), "Field and laboratory tests investigating settlements of foundations on weathered Keuper Marl",Geotech. Geol. Eng., 28(3), 233-240. DOI: 10.1007/s10706-009-9259-y
- Kalipcilar, İ., Aghabaglou, A.M., Sezer G.İ., Altun, A. and Sezer, A. (2016), "Assessment of the effect of sulfate attack on cement stabilized montmorillonite", Geomech. Eng., Int. J., 10(6), 807-826. DOI: 10.12989/gae.2016.10.6.807
- Mohamed, A.M.O. (2000), "The role of clay minerals in marly soils on its stability", Eng. Geol., 57(3), 193-203. https://doi.org/10.1016/S0013-7952(00)00029-6
- Nelson, J.D. and Miller, D.J. (1992), Expansive Soils Problems and Practice in Foundation and Pavement Engineering, Wiley, New York, NY, USA.
- NGIDR (National Geoscience Database of Iran) (2004), Azerbaijan-e-Shargi General Geology. URL: www.ngdir/States/StateDateil
- Pettijohn, F.J. (1975), Sedimentary Rocks, Harper and Row, New York, NY, USA, 628 p.
- Rieben, H. (1935), "Contribution a la geologie de I", Azarbaidjan person, These presentee a la Faculte des Sciences de I, Universite de Neuchatel pour obtenirIe grade de Docteures sciences, Neuchatel imprimerie central, S.A-142 P.
- Sadrekarimi, J., Zekri, A. and Majidpour, H. (2006), "Geotechnical features of Tabriz Marl", IAEG2006, Paper No. 335.
- Sajjadi, S.A.H., Mirzaei, M., Nasab, A.F., Ghezelje, A., Tadayonfar, Gh. and Sarkardeh, H. (2016), "Effect of soil physical properties on infiltration rate", Geomech. Eng., Int. J., 10(6), 727-736. DOI: 10.12989/gae.2016.10.6.727
- Shaqour, M.F., Jarrar, G., Hencher, S. and Kuisi, M. (2008), "Geotechnical and mineralogical characteristics of marl deposits in Jordan", Environ. Geol., 55(8), 1777-1783. DOI: 10.1007/s00254-007-1128-5
- Songhe, W., Jilin, Q., Fan, Y. and Fengyin, L. (2016), "A novel modeling of settlement of foundations in permafrost regions", Geomech. Eng., Int. J., 10(2), 225-245. DOI: 10.12989/gae.2016.10.2.225
- Terzaghi, K. and Peck, R.B. (1967), Soil Mechanics in Engineering Practice, John Wiley and Sons, Inc., New York, NY, USA.
- Tomanovic, Z. (2006), "Rheological model of soft rock creep based on the test on marl", Mech. Time-Depend Mater.,10(2), 135-154. https://doi.org/10.1007/s11043-006-9005-2
- Tomanovic, Z. (2014), "Initial and time-dependent deformations in marl around small circular opening", DOI: 10.14256/JCE.1120.2014
- Voottipruex, P. and Jamsawang, P. (2014), "Characteristics of expansive soils improved with cement and fly ash in Northern Thailand", Geomech. Eng., Int. J., 6(5), 437-453. https://doi.org/10.12989/gae.2014.6.5.437
- Wang, J.B., Liu, X.R., Song, Z.P. and Shao, Z.S. (2015), "An improved Maxwell creep model for salt rock", Geomech. Eng., Int. J., 9(4), 499-511. https://doi.org/10.12989/gae.2015.9.4.499
- Yong, R.N. and Ouhadi, V.R. (1997), "Reaction factors impacting on instability of bases on natural and lime-stabilized marls", Special Lecture; Keynote Paper In: Proceeding of the International Conference on Foundation Failures, Singapore, May, pp. 87-100.
- Yong, R.N. and Ouhadi, V.R. (2007), "Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils", Eng. Geol., 35(3), 238-249.
- Zumrawi, M.E. (2013), "Geotechnical aspects for roads on expansive soils", Int. J. Sci. Res. (IJSR), 6(14).
Cited by
- Assessment of the swelling potential of Baghmisheh marls in Tabriz, Iran vol.18, pp.3, 2017, https://doi.org/10.12989/gae.2019.18.3.267
- Two dimensional finite element modeling of Tabriz metro underground station L2-S17 in the marly layers vol.19, pp.4, 2017, https://doi.org/10.12989/gae.2019.19.4.315
- Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran vol.19, pp.5, 2017, https://doi.org/10.12989/gae.2019.19.5.393
- California Bearing Ratio of a Reactive Clay Treated with Nano-Additives and Cement vol.34, pp.2, 2022, https://doi.org/10.1061/(asce)mt.1943-5533.0004028