Abstract
With the development of virtual reality technology, in recent years, user-friendly hand gesture interface has been more studied for natural interaction with a virtual 3D object. Most earlier studies on the hand-gesture interface are using relatively simple hand gestures. In this paper, we suggest an intuitive hand gesture interface for interaction with 3D object in the virtual reality applications. For hand gesture recognition, first of all, we preprocess various hand data and classify the data through the binary decision tree. The classified data is re-sampled and converted to the chain-code, and then constructed to the hand feature data with the histograms of the chain code. Finally, the input gesture is recognized by MCSVM-based machine learning from the feature data. To test our proposed hand gesture interface we implemented a 'Virtual Block' game. Our experiments showed about 99.2% recognition ratio of 16 kinds of command gestures and more intuitive and user friendly than conventional mouse interface.
최근 가상현실 기술의 발전으로 가상의 3D 객체와 자연스러운 상호작용이 가능하도록 하는 사용자 친화적인 손 제스처 인터페이스에 대한 연구가 활발히 진행되고 있다. 그러나 대부분의 연구는 단순하고 적은 종류의 손 제스처만 지원되고 있는 실정이다. 본 논문은 가상환경에서 3D 객체와 보다 직관적인 방식의 손 제스처 인터페이스 방법을 제안한다. 손 제스처 인식을 위하여 먼저 전처리 과정을 거친 다양한 손 데이터를 이진 결정트리로 1차 분류를 한다. 분류된 데이터는 리샘플링을 한 다음 체인코드를 생성하고 이에 대한 히스토그램으로 특징 데이터를 구성한다. 이를 기반으로 학습된 MCSVM을 통해 2차 분류를 수행하여 제스처를 인식한다. 본 방법의 검증을 위하여 3D 블록을 손 제스처를 통하여 조작하는 'Virtual Block'이라는 게임을 구현하여 실험한 결과 16개의 제스처에 대해 99.2%의 인식률을 보였으며 기존의 인터페이스보다 직관적이고 사용자 친화적임을 알 수 있었다.