DOI QR코드

DOI QR Code

열전지용 황철석(FeS2) 입자크기 변화에 따른 전기화학반응 메커니즘

Electrochemical Reaction Mechanism with Variation of Pyrite (FeS2) Particle Size for Thermal Battery

  • 박병준 (국방과학연구소 4기술연구본부)
  • 투고 : 2017.02.02
  • 심사 : 2017.03.06
  • 발행 : 2017.04.01

초록

Pulverized $FeS_2$ (pyrite) gives different discharge test results with as-received $FeS_2$ electrodes. The as-received $FeS_2$ electrode shows three voltage plateaus during the discharge test. However, the ball-milled $FeS_2$ electrode shows two voltage plateaus. To interpret this result, the effect of $FeS_2$ particle size on electrochemical reactions is investigated by unit cell discharge tests, SEM and XRD. As a result, it is found that the transition reaction product ($Li_2+xFe+xS_2$) of $FeS_2$ explains the difference. The as-received $FeS_2$ reacts according to three reaction steps ($FeS_2{\rightarrow}Li_3Fe_2S_4{\rightarrow}Li_2+xFe_1+xS_2{\rightarrow}LiFe_2S_4$). However, ball-milled $FeS_2$ reacts without the $Li_2+xFe_1+xS_2$ stage. In this study, this result is explained by the difference in electrochemical reaction mechanism. The as-received $FeS_2$ has a larger radius than the ball-milled $FeS_2$. Therefore, the lithium ion has to diffuse into the $FeS_2$ unreacted core, and $Li_2+xFe_1+xS_2$, the transition reaction product of as-received $FeS_2$, is formed during this stage.

키워드

참고문헌

  1. S. S. Wang and R. N. Seefurth, J. Electrochem. Soc., 152, A405 (2005). [DOI: https://doi.org/10.1149/1.1850861]
  2. Z. Tomczuk, S. K. Preto, and M. F. Roche, J. Electrochem. Soc., 128, 760 (1981). [DOI: https://doi.org/10.1149/1.2127502]
  3. R. A. Guidotti and P. Masset, J. Power Sources, 161, 1443 (2006). [DOI: https://doi.org/10.1016/j.jpowsour.2006.06.013]
  4. R. A. Guidotti, F. W. Reinhardt, J. Dai, J. Roth, and D. E. Reisner, J. New Mater. Electrochem. Syst., 5, 273 (2002).
  5. D. E. Reisner, T. D. Xiao, H. Ye, J. Dai, R. A. Guidotti, and F. W. Reinhardt, J. New Mater. Electrochem. Syst., 2, 279 (1999).
  6. Y. S. Choi, H. R. Ryu, and H. W. Cheong, J. Power Sources, 276, 102 (2015). [DOI: https://doi.org/10.1016/j.jpowsour.2014.11.103]
  7. M. Au, J. Power Sources, 115, 360 (2003). [DOI: https://doi.org/10.1016/S0378-7753(02)00627-4]
  8. Y. S. Choi, H. R. Ryu, H. W. Cheong, S. B. Cho, and Y. S. Lee, J. Kor. Ind. Eng. Chem., 25, 72 (2014).
  9. Y. S. Choi, H. R. Ryu, H. W. Cheong, S. B. Cho, and Y. S. Lee, J. Kor. Ind. Eng. Chem., 25, 161 (2014).
  10. Y. S. Choi, S. B. Cho, and Y. S. Lee, J. Kor. Ind. Eng. Chem., 20, 3584 (2014). [DOI: https://doi.org/10.1016/j.jiec.2013.12.052]
  11. R. A. Guidotti and P. J. Masset, J. Power Sources, 183, 388 (2008). [DOI: https://doi.org/10.1016/j.jpowsour.2008.04.090]
  12. B. Fegley Jr., K. Lodders, A. H. Treiman, and G. Klingehofer, Icarus, 115, 159 (1995). https://doi.org/10.1006/icar.1995.1086
  13. Y. Hong and B. Fegley, Ber. Bunsen-Ges. Phys. Chem., 101, 1870 (1997). [DOI: https://doi.org/10.1002/bbpc.1997101 1212]
  14. I. C. Hoare, J. H. Hurst, and I. W. Stuart, J. Chem. Soc., Perkin Trans. 1, 84, 3071 (1988). [DOI: https://doi.org/10.1039/f19888403071]
  15. O. Levenspiel, Chemical Reaction Engineering (John Wiley & Sons, New York, 1998) p. 566.