DOI QR코드

DOI QR Code

Dielectric and Electrocaloric Properties of Ba(Ti1-xZrx)O3 Ceramics

Ba(Ti1-xZrx)O3 세라믹스의 유전 및 전기열량 특성

  • Ra, Cheol-Min (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University) ;
  • Lee, Jie-Young (Department of Computer Science Engineering, Semyung University)
  • Received : 2017.01.13
  • Accepted : 2017.03.02
  • Published : 2017.04.01

Abstract

In this study, in order to develop composition ceramics for refrigeration device application at a temperature of less than $90^{\circ}C$, a $Ba(Ti_{1-x}Zr_x)O_3$ composition was fabricated using a conventional solid-state method. Electrocaloric properties of these ceramics were investigated using the characteristics of P-E hysteresis loops in a wide temperature range from room temperature to $150^{\circ}C$. The Curie temperature of $Ba(Ti_{1-x}Zr_x)O_3$ ceramics decreased with the increase of x. The maximum value of ${\Delta}T=0.07^{\circ}C$ in an ambient temperature of $85^{\circ}C$ under 30 kV/cm appeared when x = 0.125. It was concluded that the composition (x = 0.125) ceramics can be used for refrigeration device applications.

Keywords

References

  1. M. Ozbolt, A. Kitanovski, J. Tusek, and A. Poredos, Int. J. Refrig., 40, 174 (2014). https://doi.org/10.1016/j.ijrefrig.2013.11.007
  2. D. Q. Xiao, Y. C. Wang, R. L. Zhang, S. Q. Peng, J. G. Zhu, and B. Yang, Mater. Chem. Phys., 57, 182 (1998). https://doi.org/10.1016/S0254-0584(98)00204-1
  3. X. C. Zheng, G. P. Zheng, Z. Lin, and Z. Y. Jiang, J. Electroceram., 28, 20 (2012). [DOI: http://dx.doi.org/10.1007/s10832-011-9673-4]
  4. S. L. Russek and C. B. Zimm, Int. J. Refrig., 29, 1366 (2006). [DOI: http://dx.doi.org/10.1016/j.ijrefrig.2006.07.019]
  5. M. Valant, Prog. Mater Sci., 57, 980 (2012). [DOI: http://dx.doi.org/10.1016/j.pmatsci.2012.02.001]
  6. L. Shebanovs, K. Borman, W. N. Lawless, and A. Kalvane, Ferroelectrics, 273, 137 (2002). [DOI: http://dx.doi.org/10.1080/00150190211761]
  7. C. M. Ra, J. H. Yoo, S. H. Choi, and Y. W. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 375 (2015). [DOI: http://dx.doi.org/10.4313/JKEM.2015.28.6.375]
  8. Y. Bai, G. P. Zheng, K. Ding, L. Qiao, S. Q. Shi, and D. Guo, J. Appl. Phys., 110, 094103 (2011). [DOI: http://doi.org/10.1063/1.3658251]
  9. J. H. Yoo, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 13 (2017). [DOI: http://dx.doi.org/10.4313/JKEM.2017.30.01.13]
  10. H. J. Ye, X. S. Qian, D. Y. Jeong, S. Zhang, Y. Zhou, W. Z. Shao, L. Zhen, and Q. M. Zhang, Appl. Phys. Lett., 105, 152908 (2014). [DOI: http://dx.doi.org/10.1063/1.4898599]